IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp1259-1271.html
   My bibliography  Save this article

Selection of minimum temperature difference (ΔTmin) for heat exchanger network synthesis based on trade-off plot

Author

Listed:
  • Bakar, Suraya Hanim Abu
  • Hamid, Mohd. Kamaruddin Abd.
  • Alwi, Sharifah Rafidah Wan
  • Manan, Zainuddin Abdul

Abstract

This paper presents a systematic technique to select the optimal design target for the heat exchanger network (HEN) synthesis by using a new trade-off plot which considers aspects of design, controllability in terms of steady state flexibility and sensitivity analysis, and cost. By selecting the HEN design target according to this guideline, the designer is able to predict the design, operability, and controllability of the designed HEN at the beginning of the synthesis stage. In this study, the HEN design target that needs to be optimized is the value of the minimum temperature difference (ΔTmin). In traditional HEN synthesis, designers only consider the trade-off between capital and operating costs in selecting the best ΔTmin. As a result, the HEN design at the selected ΔTmin may not be optimum in terms of steady state controllability. In addition to considering the capital and operating costs, the proposed new method provides additional design insights in terms of energy recovery, operability, controllability (steady state) through the flexibility and sensitivity. The proposed trade-off plot allows designers to choose the most suitable design target either for the purpose of improving a network’s energy recovery and/or controllability. A case study has been applied to test the capability of the new proposed trade-off plot. The results show that ΔTmin=40°C is the optimal design target to synthesize flexible and operable HEN.

Suggested Citation

  • Bakar, Suraya Hanim Abu & Hamid, Mohd. Kamaruddin Abd. & Alwi, Sharifah Rafidah Wan & Manan, Zainuddin Abdul, 2016. "Selection of minimum temperature difference (ΔTmin) for heat exchanger network synthesis based on trade-off plot," Applied Energy, Elsevier, vol. 162(C), pages 1259-1271.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1259-1271
    DOI: 10.1016/j.apenergy.2015.07.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915008855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.07.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yufei & Wei, Ying & Feng, Xiao & Chu, Khim Hoong, 2014. "Synthesis of heat exchanger networks featuring batch streams," Applied Energy, Elsevier, vol. 114(C), pages 30-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sofie Marton & Elin Svensson & Simon Harvey, 2020. "Operability and Technical Implementation Issues Related to Heat Integration Measures—Interview Study at an Oil Refinery in Sweden," Energies, MDPI, vol. 13(13), pages 1-23, July.
    2. Boldyryev, Stanislav & Gil, Tatyana & Ilchenko, Mariia, 2022. "Environmental and economic assessment of the efficiency of heat exchanger network retrofit options based on the experience of society and energy price records," Energy, Elsevier, vol. 260(C).
    3. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Ulyev, Leonid & Boldyryev, Stanislav & Kuznetsov, Maxim, 2023. "Investigation of process stream systems for targeting energy-capital trade-offs of a heat recovery network," Energy, Elsevier, vol. 263(PD).
    5. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2018. "Targeting and design of heating utility system for offshore platform," Energy, Elsevier, vol. 146(C), pages 98-111.
    6. Oluleye, Gbemi & Smith, Robin, 2016. "A mixed integer linear programming model for integrating thermodynamic cycles for waste heat exploitation in process sites," Applied Energy, Elsevier, vol. 178(C), pages 434-453.
    7. Zhang, Di & Lv, Donghui & Yin, Changfang & Liu, Guilian, 2020. "Combined pinch and mathematical programming method for coupling integration of reactor and threshold heat exchanger network," Energy, Elsevier, vol. 205(C).
    8. Liu, Linlin & Li, Chenying & Gu, Siwen & Zhang, Lei & Du, Jian, 2020. "Optimization-based framework for the synthesis of heat exchanger networks incorporating controllability," Energy, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Ming & Bulatov, Igor & Smith, Robin, 2016. "Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation," Applied Energy, Elsevier, vol. 161(C), pages 611-626.
    2. Magege, Simbarashe R. & Majozi, Thokozani, 2021. "A comprehensive framework for synthesis and design of heat-integrated batch plants: Consideration of intermittently-available streams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Dong, Ruifeng & Yu, Yunsong & Zhang, Zaoxiao, 2014. "Simultaneous optimization of integrated heat, mass and pressure exchange network using exergoeconomic method," Applied Energy, Elsevier, vol. 136(C), pages 1098-1109.
    4. Pavão, L.V. & Costa, C.B.B. & Ravagnani, M.A.S.S. & Jiménez, L., 2017. "Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach," Applied Energy, Elsevier, vol. 203(C), pages 304-320.
    5. Er, Hong An & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2022. "Simultaneous retrofit of direct and indirect Heat Exchanger Storage Network (HESN) via individual batch process stream mapping," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1259-1271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.