IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224005887.html
   My bibliography  Save this article

Development of direct seawater-cooled LiBr–H2O absorption chiller and its application in industrial waste heat utilization

Author

Listed:
  • Du, Shuai
  • Xu, Zhenyuan
  • Wang, Ruzhu
  • Yang, Chun

Abstract

In hot coastal regions where fresh water is scarce, absorption chillers driven by industrial waste heat and cooled by seawater are suitable to achieve cooling demands, and it contributes to improving energy efficiency and reducing CO2 emissions. However, seawater cooling strategy is a trade-off between performance and cost for practical applications, and there are few direct seawater-cooled absorption chillers. In addition, the integration of absorption chillers into a waste heat utilization network is often not well planned, and thus the waste heat is usually not used efficiently. This paper presents the direct seawater cooling strategy for the absorption chiller in terms of high performance and low cost by comparing different seawater cooling strategies numerically and experientially. To realize efficient energy utilization, an existing waste heat utilization network is analyzed graphically based on pinch method, and the available heat for absorption chillers is obtained by the position of the pinch point. According to the available heat, the direct seawater-cooled absorption chiller with a designed cooling capacity of 4200 kW is developed by using titanium tubes, anticorrosive paints and rubber covers to construct the corrosion-resistant condenser and absorber. The site testing results show an average cooling capacity of 3043 kW and an average COP of 0.77 of the absorption chiller when the temperatures of the hot water, seawater and chilled water varies from 98.7 °C to 80.7 °C, from 30.2 °C to 34.2 °C, and from 14.4 °C to 8.6 °C, respectively. Due to the integration, the energy and exergy efficiencies of the waste heat utilization network is improved by 55.9% and 86.1%, respectively. The application demonstrates that the direct seawater-cooled absorption chiller holds the promise for waste heat utilization in coastal regions.

Suggested Citation

  • Du, Shuai & Xu, Zhenyuan & Wang, Ruzhu & Yang, Chun, 2024. "Development of direct seawater-cooled LiBr–H2O absorption chiller and its application in industrial waste heat utilization," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005887
    DOI: 10.1016/j.energy.2024.130816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224005887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boldyryev, Stanislav & Shamraev, Anatoly A. & Shamraeva, Elena O., 2021. "The design of the total site exchanger network with intermediate heat carriers: Theoretical insights and practical application," Energy, Elsevier, vol. 223(C).
    2. Chan, Wai Mun & Leong, Yik Teeng & Foo, Ji Jinn & Chew, Irene Mei Leng, 2017. "Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system," Energy, Elsevier, vol. 141(C), pages 1555-1568.
    3. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    4. Du, S. & Wang, R.Z., 2019. "A unified single stage ammonia-water absorption system configuration with producing best thermal efficiencies for freezing, air-conditioning and space heating applications," Energy, Elsevier, vol. 174(C), pages 1039-1048.
    5. Du, S. & Wang, R.Z. & Xia, Z.Z., 2014. "Optimal ammonia water absorption refrigeration cycle with maximum internal heat recovery derived from pinch technology," Energy, Elsevier, vol. 68(C), pages 862-869.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro A. S. Lima & Gustavo de N. P. Leite & Alvaro A. V. Ochoa & Carlos A. C. dos Santos & José A. P. da Costa & Paula S. A. Michima & Allysson M. A. Caldas, 2020. "Absorption Refrigeration Systems Based on Ammonia as Refrigerant Using Different Absorbents: Review and Applications," Energies, MDPI, vol. 14(1), pages 1-41, December.
    2. Jia, Teng & Dou, Pengbo & Chen, Erjian & Dai, Yanjun, 2022. "Feasibility and performance analysis of a hybrid GAX-based absorption-compression heat pump system for space heating in extremely cold climate conditions," Energy, Elsevier, vol. 242(C).
    3. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    4. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    5. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    6. Xuan Tao & Dhinesh Thanganadar & Kumar Patchigolla, 2022. "Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance," Energies, MDPI, vol. 15(18), pages 1-28, September.
    7. Chen, X. & Wang, R.Z. & Du, S., 2017. "Heat integration of ammonia-water absorption refrigeration system through heat-exchanger network analysis," Energy, Elsevier, vol. 141(C), pages 1585-1599.
    8. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    9. Du, S. & Wang, R.Z., 2019. "A unified single stage ammonia-water absorption system configuration with producing best thermal efficiencies for freezing, air-conditioning and space heating applications," Energy, Elsevier, vol. 174(C), pages 1039-1048.
    10. Chen, X. & Wang, R.Z. & Du, S., 2017. "An improved cycle for large temperature lifts application in water-ammonia absorption system," Energy, Elsevier, vol. 118(C), pages 1361-1369.
    11. Yijian He & Yufu Zheng & Jianguang Zhao & Qifei Chen & Lunyuan Zhang, 2024. "Study of a Novel Hybrid Refrigeration System, with Natural Refrigerants and Ultra-Low Carbon Emissions, for Air Conditioning," Energies, MDPI, vol. 17(4), pages 1-19, February.
    12. Boldyryev, Stanislav & Gil, Tatyana & Krajačić, Goran & Khussanov, Alisher, 2023. "Total site targeting with the simultaneous use of intermediate utilities and power cogeneration at the polymer plant," Energy, Elsevier, vol. 279(C).
    13. Jinke Tao & Huitao Wang & Jianjun Wang & Chaojun Feng, 2022. "Exergoeconomic and Exergoenvironmental Analysis of a Novel Power and Cooling Cogeneration System Based on Organic Rankine Cycle and Ejector Refrigeration Cycle," Energies, MDPI, vol. 15(21), pages 1-23, October.
    14. Zhou, Hao & Li, Hong & Geng, Xueli & Gao, Xin, 2023. "Techno-economic and energetic assessment of an innovative energy-saving separation process for electronic-grade acetone purification," Energy, Elsevier, vol. 282(C).
    15. Du, S. & Wang, R.Z. & Chen, X., 2017. "Development and experimental study of an ammonia water absorption refrigeration prototype driven by diesel engine exhaust heat," Energy, Elsevier, vol. 130(C), pages 420-432.
    16. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    17. Ghavami, Morteza & Gholizadeh, Mohammad & Deymi-Dashtebayaz, Mahdi, 2023. "Parametric study and optimization analysis of a multi-generation system using waste heat in natural gas refinery- an energy and exergoeconomic analysis," Energy, Elsevier, vol. 272(C).
    18. Chauhan, Shivendra Singh & Khanam, Shabina, 2019. "Enhancement of efficiency for steam cycle of thermal power plants using process integration," Energy, Elsevier, vol. 173(C), pages 364-373.
    19. Jia, Teng & Dai, Enqian & Dai, Yanjun, 2019. "Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application," Energy, Elsevier, vol. 171(C), pages 120-134.
    20. Xu, Hao & Xu, Xiafan & Chen, Liubiao & Guo, Jia & Wang, Junjie, 2022. "A novel cryogenic condensation system combined with gas turbine with low carbon emission for volatile compounds recovery," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224005887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.