IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v179y2021icp23-47.html
   My bibliography  Save this article

Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling

Author

Listed:
  • Rahmoune, Mohamed Ben
  • Hafaifa, Ahmed
  • Kouzou, Abdellah
  • Chen, XiaoQi
  • Chaibet, Ahmed

Abstract

The main purpose of the present work is to propose an effective tool which allows to ensure the protection and the safety measures against the instability phenomena in a gas turbine based on the modelling of its dynamic behaviour. In order to provide an efficient diagnostic strategy for this type of rotating machine, a supervision system based on the development of artificial neural network tools is proposed in this paper. Where, the dynamic nonlinear autoregressive approach with external exogenous input NARX is used for the identification of the studied system dynamics, to monitor the vibrational dynamics of the operating turbine. This leads to establishing a solution for the different ranges of rotational speed and ensuring dynamic stability through the vibration indicators, determined by the proposed neural network approach. Also, offer a normalized mean square error on the order of 3.8414e−3 for the high-pressure turbine, 1.29152e−1 for the gas control valve and 2.12090 e-4 for the air control valve. Furthermore, it permits the vibration monitoring and efficiently extracts the essentials of dynamic model behaviour, to effectively size the operating gas turbine system.

Suggested Citation

  • Rahmoune, Mohamed Ben & Hafaifa, Ahmed & Kouzou, Abdellah & Chen, XiaoQi & Chaibet, Ahmed, 2021. "Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 23-47.
  • Handle: RePEc:eee:matcom:v:179:y:2021:i:c:p:23-47
    DOI: 10.1016/j.matcom.2020.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420302457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadroug, Nadji & Hafaifa, Ahmed & Kouzou, Abdellah & Chaibet, Ahmed, 2017. "Dynamic model linearization of two shafts gas turbine via their input/output data around the equilibrium points," Energy, Elsevier, vol. 120(C), pages 488-497.
    2. Kobayashi, Hiroaki & Gotoda, Hiroshi & Tachibana, Shigeru, 2018. "Nonlinear determinism in degenerated combustion instability in a gas-turbine model combustor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 345-354.
    3. Palmé, Thomas & Fast, Magnus & Thern, Marcus, 2011. "Gas turbine sensor validation through classification with artificial neural networks," Applied Energy, Elsevier, vol. 88(11), pages 3898-3904.
    4. Fast, M. & Assadi, M. & De, S., 2009. "Development and multi-utility of an ANN model for an industrial gas turbine," Applied Energy, Elsevier, vol. 86(1), pages 9-17, January.
    5. Nikpey, H. & Assadi, M. & Breuhaus, P., 2013. "Development of an optimized artificial neural network model for combined heat and power micro gas turbines," Applied Energy, Elsevier, vol. 108(C), pages 137-148.
    6. Joly, R. B. & Ogaji, S. O. T. & Singh, R. & Probert, S. D., 2004. "Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine," Applied Energy, Elsevier, vol. 78(4), pages 397-418, August.
    7. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés Meana-Fernández & Juan M. González-Caballín & Roberto Martínez-Pérez & Francisco J. Rubio-Serrano & Antonio J. Gutiérrez-Trashorras, 2022. "Power Plant Cycles: Evolution towards More Sustainable and Environmentally Friendly Technologies," Energies, MDPI, vol. 15(23), pages 1-27, November.
    2. Zulkeflee, Siti Asyura & Rohman, Fakhrony Sholahudin & Abd Sata, Suhairi & Aziz, Norashid, 2021. "Autoregressive exogenous input modelling for lipase catalysed esterification process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 325-339.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
    2. Homam Nikpey Somehsaraei & Susmita Ghosh & Sayantan Maity & Payel Pramanik & Sudipta De & Mohsen Assadi, 2020. "Automated Data Filtering Approach for ANN Modeling of Distributed Energy Systems: Exploring the Application of Machine Learning," Energies, MDPI, vol. 13(14), pages 1-15, July.
    3. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    4. Nikpey, H. & Assadi, M. & Breuhaus, P., 2013. "Development of an optimized artificial neural network model for combined heat and power micro gas turbines," Applied Energy, Elsevier, vol. 108(C), pages 137-148.
    5. Nikpey, H. & Assadi, M. & Breuhaus, P. & Mørkved, P.T., 2014. "Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas," Applied Energy, Elsevier, vol. 117(C), pages 30-41.
    6. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2022. "Fault detection of industrial large-scale gas turbine for fuel distribution characteristics in start-up procedure using artificial neural network method," Energy, Elsevier, vol. 251(C).
    7. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    8. Fang, Xiande & Dai, Qiumin & Yin, Yanxin & Xu, Yu, 2010. "A compact and accurate empirical model for turbine mass flow characteristics," Energy, Elsevier, vol. 35(12), pages 4819-4823.
    9. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    10. Damilola Elizabeth Babatunde & Ambrose Anozie & James Omoleye, 2020. "Artificial Neural Network and its Applications in the Energy Sector An Overview," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 250-264.
    11. Park, Yeseul & Choi, Minsung & Kim, Kibeom & Li, Xinzhuo & Jung, Chanho & Na, Sangkyung & Choi, Gyungmin, 2020. "Prediction of operating characteristics for industrial gas turbine combustor using an optimized artificial neural network," Energy, Elsevier, vol. 213(C).
    12. Xu, Xiandong & Li, Kang & Qi, Fengyu & Jia, Hongjie & Deng, Jing, 2017. "Identification of microturbine model for long-term dynamic analysis of distribution networks," Applied Energy, Elsevier, vol. 192(C), pages 305-314.
    13. Fang, Xiande & Xu, Yu, 2011. "Development of an empirical model of turbine efficiency using the Taylor expansion and regression analysis," Energy, Elsevier, vol. 36(5), pages 2937-2942.
    14. Zhao, Junjie & Li, Yi-Guang & Sampath, Suresh, 2023. "A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics," Applied Energy, Elsevier, vol. 332(C).
    15. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    16. Liu, Zuming & Karimi, Iftekhar A., 2020. "Gas turbine performance prediction via machine learning," Energy, Elsevier, vol. 192(C).
    17. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
    18. Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
    19. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    20. Hou, Guolian & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2020. "Fuzzy modeling and fast model predictive control of gas turbine system," Energy, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:179:y:2021:i:c:p:23-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.