IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002834.html
   My bibliography  Save this article

Model-based deduction learning control: A novel method for optimizing gas turbine engine afterburner transient

Author

Listed:
  • Feng, Hailong
  • Liu, Bei
  • Xu, Maojun
  • Li, Ming
  • Song, Zhiping

Abstract

The afterburning phase of an aero gas turbine engine is essential for boosting engine thrust. Traditional methods that combine open-loop afterburner fuel flow with closed-loop nozzle throat area control always degrade control quality during the transients of afterburner activation and deactivation. This results in fluctuations in the turbine outlet total pressure, consequently decreasing the fan surge margin, and may even lead to afterburner ignition failure or fan surge. A model-based deduction learning control method is proposed to address these issues. This method comprises: 1) a model-based offline experience deduction and learning module to enhance the coordination of afterburner fuel flow and nozzle throat area control during the early stages of afterburner activation or deactivation; 2) a power lever angle reference trajectory module designed to enhance the linearity of thrust output; 3) a nonlinear integrated online output module to maintain control stability. Simulation results have shown that the method effectively reduces the fluctuations in turbine outlet total pressure, bolsters the fan surge margin, and improves the linearity of thrust during the afterburning phase.

Suggested Citation

  • Feng, Hailong & Liu, Bei & Xu, Maojun & Li, Ming & Song, Zhiping, 2024. "Model-based deduction learning control: A novel method for optimizing gas turbine engine afterburner transient," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002834
    DOI: 10.1016/j.energy.2024.130512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Maojun & Liu, Jinxin & Li, Ming & Geng, Jia & Wu, Yun & Song, Zhiping, 2022. "Improved hybrid modeling method with input and output self-tuning for gas turbine engine," Energy, Elsevier, vol. 238(PA).
    2. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    3. Lv, Chengkun & Lan, Zhu & Wang, Ziao & Chang, Juntao & Yu, Daren, 2024. "Intelligent ammonia precooling control for TBCC mode transition based on neural network improved equilibrium manifold expansion model," Energy, Elsevier, vol. 288(C).
    4. Zhao, Yong-Ping & Hu, Qian-Kun & Xu, Jian-Guo & Li, Bing & Huang, Gong & Pan, Ying-Ting, 2018. "A robust extreme learning machine for modeling a small-scale turbojet engine," Applied Energy, Elsevier, vol. 218(C), pages 22-35.
    5. Ibrahem, Ibrahem M.A. & Akhrif, Ouassima & Moustapha, Hany & Staniszewski, Martin, 2021. "Nonlinear generalized predictive controller based on ensemble of NARX models for industrial gas turbine engine," Energy, Elsevier, vol. 230(C).
    6. Zhao, Hang & Liao, Zengbu & Liu, Jinxin & Li, Ming & Liu, Wei & Wang, Lei & Song, Zhiping, 2022. "A highly robust thrust estimation method with dissimilar redundancy framework for gas turbine engine," Energy, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serhii Vladov & Maryna Bulakh & Jan Czyżewski & Oleksii Lytvynov & Victoria Vysotska & Victor Vasylenko, 2024. "Method for Helicopter Turboshaft Engines Controlling Energy Characteristics Through Regulating Free Turbine Rotor Speed and Fuel Consumption Based on Neural Networks," Energies, MDPI, vol. 17(22), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xinhai & Wang, Kang & Geng, Jia & Li, Ming & Song, Zhiping, 2024. "A fault-tolerant acceleration control strategy for turbofan engine based on multi-layer perceptron with exponential Gumbel loss," Energy, Elsevier, vol. 294(C).
    2. Liao, Zengbu & Zhan, Keyi & Zhao, Hang & Deng, Yuntao & Geng, Jia & Chen, Xuefeng & Song, Zhiping, 2024. "Addressing class-imbalanced learning in real-time aero-engine gas-path fault diagnosis via feature filtering and mapping," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Zheng, Qiangang & Zhang, Hongwei & Hu, Chenxu & Zhang, Haibo, 2024. "Performance seeking control method for minimum pollutant emission mode for turbofan engine," Energy, Elsevier, vol. 289(C).
    4. Zhao, Hang & Liao, Zengbu & Liu, Jinxin & Li, Ming & Liu, Wei & Wang, Lei & Song, Zhiping, 2022. "A highly robust thrust estimation method with dissimilar redundancy framework for gas turbine engine," Energy, Elsevier, vol. 245(C).
    5. Chen, Yu-Zhi & Tsoutsanis, Elias & Wang, Chen & Gou, Lin-Feng, 2023. "A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions," Energy, Elsevier, vol. 263(PD).
    6. Liu, Xiaofeng & Song, Enshu & Zhang, Liming & Luan, Yongjun & Wang, Jianhua & Luo, Chenshuang & Xiong, Liuqi & Pan, Qiang, 2024. "Design and implementation for the state time-delay and input saturation compensator of gas turbine aero-engine control system," Energy, Elsevier, vol. 288(C).
    7. Sharifi, Alireza & Salarieh, Hassan, 2023. "An adaptive synergetic controller applied to heavy-duty gas turbine unit," Applied Energy, Elsevier, vol. 333(C).
    8. Liu, Hui & Duan, Zhu & Li, Yanfei & Lu, Haibo, 2018. "A novel ensemble model of different mother wavelets for wind speed multi-step forecasting," Applied Energy, Elsevier, vol. 228(C), pages 1783-1800.
    9. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
    10. Cai, Changpeng & Zheng, Qiangang & Wang, Yong & Chen, Haoying & Zhang, Haibo, 2024. "Predictive control method for mode transition process of multi-mode turbine engine based on onboard adaptive composite model," Energy, Elsevier, vol. 302(C).
    11. Yu, Jianxi & Petersen, Nils & Liu, Pei & Li, Zheng & Wirsum, Manfred, 2022. "Hybrid modelling and simulation of thermal systems of in-service power plants for digital twin development," Energy, Elsevier, vol. 260(C).
    12. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
    13. Tang, Ruoli & Lin, Qiao & Zhou, Jinxiang & Zhang, Shangyu & Lai, Jingang & Li, Xin & Dong, Zhengcheng, 2020. "Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system," Applied Energy, Elsevier, vol. 259(C).
    14. Huang, Yufeng & Tao, Jun & Sun, Gang & Wu, Tengyun & Yu, Liling & Zhao, Xinbin, 2023. "A novel digital twin approach based on deep multimodal information fusion for aero-engine fault diagnosis," Energy, Elsevier, vol. 270(C).
    15. Rui Yang & Yongbao Liu & Xing He & Zhimeng Liu, 2022. "Gas Turbine Model Identification Based on Online Sequential Regularization Extreme Learning Machine with a Forgetting Factor," Energies, MDPI, vol. 16(1), pages 1-19, December.
    16. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    17. Jia, Xingyun & Zhou, Dengji, 2024. "Multi-variable anti-disturbance controller with state-dependent switching law for adaptive cycle engine," Energy, Elsevier, vol. 288(C).
    18. Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
    19. Wang, Pengfei & Zhu, Ze & Liang, Wenlong & Liao, Longtao & Wan, Jiashuang, 2023. "Hybrid mechanistic and neural network modeling of nuclear reactors," Energy, Elsevier, vol. 282(C).
    20. Song, Jie & Wang, Yong & Ji, Chuang & Zhang, Haibo, 2024. "Real-time optimization control of variable rotor speed based on Helicopter/ turboshaft engine on-board composite system," Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.