Carbon emissions trading price forecasting based on temporal-spatial multidimensional collaborative attention network and segment imbalance regression
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.124357
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, Mengjie & Li, Xiang & Li, Qianwen & Sun, Chuanwang, 2024. "LNBi-GRU model for coal price prediction and pattern recognition analysis," Applied Energy, Elsevier, vol. 365(C).
- Cui, Jingbo & Wang, Chunhua & Zhang, Junjie & Zheng, Yang, 2021. "The effectiveness of China’s regional carbon market pilots in reducing firm emissions," LSE Research Online Documents on Economics 113492, London School of Economics and Political Science, LSE Library.
- Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011.
"Carbon price volatility: Evidence from EU ETS,"
Applied Energy, Elsevier, vol. 88(3), pages 590-598, March.
- Zhen-Hua Feng & Le-Le Zou & Yi-Ming Wei, 2009. "Carbon price volatility: Evidence from EU ETS," CEEP-BIT Working Papers 4, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
- Meng, Anbo & Xie, Zhifeng & Luo, Jianqiang & Zeng, Ying & Xu, Xuancong & Li, Yidian & Wu, Zhenbo & Zhang, Zhan & Zhu, Jianbin & Xian, Zikang & Li, Chen & Yan, Baiping & Yin, Hao, 2023. "An adaptive variational mode decomposition for wind power prediction using convolutional block attention deep learning network," Energy, Elsevier, vol. 282(C).
- Sun, Wei & Huang, Chenchen, 2020. "A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network," Energy, Elsevier, vol. 207(C).
- Jianguo Zhou & Dongfeng Chen, 2021. "Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
- Wen, Fenghua & Zhao, Haocen & Zhao, Lili & Yin, Hua, 2022. "What drive carbon price dynamics in China?," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Weiping Jia & Xianwen Jia & Ling Wu & Yanbing Guo & Teng Yang & Ermei Wang & Pan Xiao, 2022. "Research on regional differences of the impact of clean energy development on carbon dioxide emission and economic growth," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
- Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
- Liang Xie & Xianzhong Mu & Kuanyuting Lu & Dongou Hu & Guangwen Hu, 2023. "The time-varying relationship between CO2 emissions, heterogeneous energy consumption, and economic growth in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7769-7793, August.
- Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
- Duan, Kun & Wang, Rui & Chen, Shun & Ge, Lei, 2023. "Exploring the predictability of attention mechanism with LSTM: Evidence from EU carbon futures prices," Research in International Business and Finance, Elsevier, vol. 66(C).
- Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
- Rodríguez, Fermín & Florez-Tapia, Ane M. & Fontán, Luis & Galarza, Ainhoa, 2020. "Very short-term wind power density forecasting through artificial neural networks for microgrid control," Renewable Energy, Elsevier, vol. 145(C), pages 1517-1527.
- Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
- Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
- Cao, Jing & Ho, Mun S. & Ma, Rong & Teng, Fei, 2021. "When carbon emission trading meets a regulated industry: Evidence from the electricity sector of China," Journal of Public Economics, Elsevier, vol. 200(C).
- Meng, Anbo & Chen, Shu & Ou, Zuhong & Xiao, Jianhua & Zhang, Jianfeng & Chen, Shun & Zhang, Zheng & Liang, Ruduo & Zhang, Zhan & Xian, Zikang & Wang, Chenen & Yin, Hao & Yan, Baiping, 2022. "A novel few-shot learning approach for wind power prediction applying secondary evolutionary generative adversarial network," Energy, Elsevier, vol. 261(PA).
- Eachempati, Prajwal & Srivastava, Praveen Ranjan & Kumar, Ajay & Tan, Kim Hua & Gupta, Shivam, 2021. "Validating the impact of accounting disclosures on stock market: A deep neural network approach," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
- Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
- Lin, Boqiang & Xu, Bin, 2021. "A non-parametric analysis of the driving factors of China's carbon prices," Energy Economics, Elsevier, vol. 104(C).
- Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
- Zhang, Wen & Wu, Zhibin & Zeng, Xiaojun & Zhu, Changhui, 2023. "An ensemble dynamic self-learning model for multiscale carbon price forecasting," Energy, Elsevier, vol. 263(PC).
- Yin, Hao & Ou, Zuhong & Huang, Shengquan & Meng, Anbo, 2019. "A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition," Energy, Elsevier, vol. 189(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ding, Lili & Zhang, Rui & Zhao, Xin, 2024. "Forecasting carbon price in China unified carbon market using a novel hybrid method with three-stage algorithm and long short-term memory neural networks," Energy, Elsevier, vol. 288(C).
- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
- Li, Jingmiao & Liu, Dehong, 2023. "Carbon price forecasting based on secondary decomposition and feature screening," Energy, Elsevier, vol. 278(PA).
- Sun, Qingqing & Chen, Hong & Long, Ruyin & Chen, Jiawei, 2024. "Integrated prediction of carbon price in China based on heterogeneous structural information and wall-value constraints," Energy, Elsevier, vol. 306(C).
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Yumin Li & Ruiqi Yang & Xiaoman Wang & Jiaming Zhu & Nan Song, 2023. "Carbon Price Combination Forecasting Model Based on Lasso Regression and Optimal Integration," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
- Jianguo Zhou & Shiguo Wang, 2021. "A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors," Energies, MDPI, vol. 14(5), pages 1-20, March.
- Jianguo Zhou & Dongfeng Chen, 2021. "Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
- Beibei Hu & Yunhe Cheng, 2023. "Prediction of Regional Carbon Price in China Based on Secondary Decomposition and Nonlinear Error Correction," Energies, MDPI, vol. 16(11), pages 1-22, May.
- Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
- Qi, Shaozhou & Cheng, Shihan & Tan, Xiujie & Feng, Shenghao & Zhou, Qi, 2022. "Predicting China's carbon price based on a multi-scale integrated model," Applied Energy, Elsevier, vol. 324(C).
- Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
- Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
- Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
- Qingjie Zhou & Panpan Zhu & Yinpeng Zhang, 2023. "Contagion Spillover from Bitcoin to Carbon Futures Pricing: Perspective from Investor Attention," Energies, MDPI, vol. 16(2), pages 1-22, January.
- Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
- Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
- Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
- Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
More about this item
Keywords
Carbon emission trading price; Segment imbalanced regression; Multi-regions; Attention mechanism; Deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017409. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.