IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipas0360544222025397.html
   My bibliography  Save this article

Sizing capacities of renewable generation, transmission, and energy storage for low-carbon power systems: A distributionally robust optimization approach

Author

Listed:
  • Xie, Rui
  • Wei, Wei
  • Li, Mingxuan
  • Dong, ZhaoYang
  • Mei, Shengwei

Abstract

To decrease carbon dioxide emission, a high penetration level of renewable energy will be witnessed over the world in the future. By then, energy storage will play an important role in power balancing and peak shaving. This paper considers the capacity sizing problem during the transition to a low-carbon power system: the retirement plan of conventional fossil-fuel generators and the growth of demands are given. The renewable generation capacities at given sites are to be determined in coordination with the upgrade of transmission lines and installation of energy storage units. In order to capture the inaccuracy of empirical probability distributions for uncertain renewable output and load profiles, a novel distributionally robust bi-objective sizing method using Wasserstein-metric-based ambiguity sets is proposed. The total investment cost and expected carbon dioxide emission subject to operating conditions and a load shedding risk constraint are minimized. The distributionally robust shortfall risk of load shedding and the worst-case expectation of carbon dioxide emission are reformulated into computable forms based on calculating the Lipschitz constants. The final problem comes down to solving mixed-integer linear programming problems. The numerical results demonstrate the effectiveness of the proposed method and the necessity of using distributionally robust optimization.

Suggested Citation

  • Xie, Rui & Wei, Wei & Li, Mingxuan & Dong, ZhaoYang & Mei, Shengwei, 2023. "Sizing capacities of renewable generation, transmission, and energy storage for low-carbon power systems: A distributionally robust optimization approach," Energy, Elsevier, vol. 263(PA).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025397
    DOI: 10.1016/j.energy.2022.125653
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222025397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    2. Gan, Wei & Ai, Xiaomeng & Fang, Jiakun & Yan, Mingyu & Yao, Wei & Zuo, Wenping & Wen, Jinyu, 2019. "Security constrained co-planning of transmission expansion and energy storage," Applied Energy, Elsevier, vol. 239(C), pages 383-394.
    3. Tostado-Véliz, Marcos & Kamel, Salah & Aymen, Flah & Jurado, Francisco, 2022. "A novel hybrid lexicographic-IGDT methodology for robust multi-objective solution of home energy management systems," Energy, Elsevier, vol. 253(C).
    4. Zhou, Yuzhou & Zhai, Qiaozhu & Yuan, Wei & Wu, Jiang, 2021. "Capacity expansion planning for wind power and energy storage considering hourly robust transmission constrained unit commitment," Applied Energy, Elsevier, vol. 302(C).
    5. Gao, Renbo & Wu, Fei & Zou, Quanle & Chen, Jie, 2022. "Optimal dispatching of wind-PV-mine pumped storage power station: A case study in Lingxin Coal Mine in Ningxia Province, China," Energy, Elsevier, vol. 243(C).
    6. Verástegui, Felipe & Lorca, Álvaro & Olivares, Daniel & Negrete-Pincetic, Matias, 2021. "Optimization-based analysis of decarbonization pathways and flexibility requirements in highly renewable power systems," Energy, Elsevier, vol. 234(C).
    7. Hemmati, Reza & Saboori, Hedayat & Jirdehi, Mehdi Ahmadi, 2017. "Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources," Energy, Elsevier, vol. 133(C), pages 380-387.
    8. Zhang, Xuehan & Son, Yongju & Cheong, Taesu & Choi, Sungyun, 2022. "Affine-arithmetic-based microgrid interval optimization considering uncertainty and battery energy storage system degradation," Energy, Elsevier, vol. 242(C).
    9. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    10. Ma, Tengfei & Pei, Wei & Deng, Wei & Xiao, Hao & Yang, Yanhong & Tang, Chenghong, 2022. "A Nash bargaining-based cooperative planning and operation method for wind-hydrogen-heat multi-agent energy system," Energy, Elsevier, vol. 239(PE).
    11. Li, Xin & Wu, Xian & Gui, De & Hua, Yawen & Guo, Panfeng, 2021. "Power system planning based on CSP-CHP system to integrate variable renewable energy," Energy, Elsevier, vol. 232(C).
    12. Galleguillos-Pozo, R. & Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2021. "Design of stand-alone electrification systems using fuzzy mathematical programming approaches," Energy, Elsevier, vol. 228(C).
    13. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    14. Xu, Guangyue & Dong, Haoyun & Xu, Zhenci & Bhattarai, Nishan, 2022. "China can reach carbon neutrality before 2050 by improving economic development quality," Energy, Elsevier, vol. 243(C).
    15. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
    16. Gonzalez-Romero, Isaac-Camilo & Wogrin, Sonja & Gomez, Tomas, 2021. "Transmission and storage expansion planning under imperfect market competition: Social planner versus merchant investor," Energy Economics, Elsevier, vol. 103(C).
    17. Xia, Shiwei & Chan, K.W. & Luo, Xiao & Bu, Siqi & Ding, Zhaohao & Zhou, Bin, 2018. "Optimal sizing of energy storage system and its cost-benefit analysis for power grid planning with intermittent wind generation," Renewable Energy, Elsevier, vol. 122(C), pages 472-486.
    18. Hamidpour, Hamidreza & Aghaei, Jamshid & Pirouzi, Sasan & Niknam, Taher & Nikoobakht, Ahmad & Lehtonen, Matti & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Coordinated expansion planning problem considering wind farms, energy storage systems and demand response," Energy, Elsevier, vol. 239(PD).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wang, Haixia & Ba, Yu, 2024. "Optimal day-ahead large-scale battery dispatch model for multi-regulation participation considering full timescale uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Dasí-Crespo, Daniel, 2023. "Optimal sizing and design of renewable power plants in rural microgrids using multi-objective particle swarm optimization and branch and bound methods," Energy, Elsevier, vol. 284(C).
    3. Bodong, Song & Wiseong, Jin & Chengmeng, Li & Khakichi, Aroos, 2023. "Economic management and planning based on a probabilistic model in a multi-energy market in the presence of renewable energy sources with a demand-side management program," Energy, Elsevier, vol. 269(C).
    4. Xiong, Yongkang & Zeng, Zhenfeng & Xin, Jianbo & Song, Guanhong & Xia, Yonghong & Xu, Zaide, 2023. "Renewable energy time series regulation strategy considering grid flexible load and N-1 faults," Energy, Elsevier, vol. 284(C).
    5. Fang, Guochang & Chen, Gang & Yang, Kun & Yin, Weijun & Tian, Lixin, 2023. "Can green tax policy promote China's energy transformation?— A nonlinear analysis from production and consumption perspectives," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yansong & Liu, Jizhen & Hu, Yong & Xie, Yan & Zeng, Deliang & Li, Ruilian, 2024. "Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy," Energy, Elsevier, vol. 288(C).
    2. Sara Lumbreras & Jesús David Gómez & Erik Francisco Alvarez & Sebastien Huclin, 2022. "The Human Factor in Transmission Network Expansion Planning: The Grid That a Sustainable Energy System Needs," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    3. Pombo, Daniel Vázquez & Martinez-Rico, Jon & Spataru, Sergiu V. & Bindner, Henrik W. & Sørensen, Poul E., 2023. "Decarbonizing energy islands with flexibility-enabling planning: The case of Santiago, Cape Verde," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Wang, Sen & Li, Fengting & Zhang, Gaohang & Yin, Chunya, 2023. "Analysis of energy storage demand for peak shaving and frequency regulation of power systems with high penetration of renewable energy," Energy, Elsevier, vol. 267(C).
    5. Wu, Yunyun & Fang, Jiakun & Ai, Xiaomeng & Xue, Xizhen & Cui, Shichang & Chen, Xia & Wen, Jinyu, 2023. "Robust co-planning of AC/DC transmission network and energy storage considering uncertainty of renewable energy," Applied Energy, Elsevier, vol. 339(C).
    6. Abdulaziz Almalaq & Khalid Alqunun & Mohamed M. Refaat & Anouar Farah & Fares Benabdallah & Ziad M. Ali & Shady H. E. Abdel Aleem, 2022. "Towards Increasing Hosting Capacity of Modern Power Systems through Generation and Transmission Expansion Planning," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    7. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    8. Khaligh, Vahid & Ghezelbash, Azam & Mazidi, Mohammadreza & Liu, Jay & Ryu, Jun-Hyung, 2023. "P-robust energy management of a multi-energy microgrid enabled with energy conversions under various uncertainties," Energy, Elsevier, vol. 271(C).
    9. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    10. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    11. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    12. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    13. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    14. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    15. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    16. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    17. Guangyue Xu & Peter Schwarz & Xiaojing Shi & Nathan Duma, 2023. "Scenario Paths of Developing Forest Carbon Sinks for China to Achieve Carbon Neutrality," Land, MDPI, vol. 12(7), pages 1-19, June.
    18. Lin, Wei & Jiang, Hua & Jian, Haojun & Xue, Jingwei & Wu, Jianghua & Wang, Chongyu & Lin, Zhenjia, 2023. "High-dimension tie-line security regions for renewable accommodations," Energy, Elsevier, vol. 270(C).
    19. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    20. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.