IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v122y2018icp472-486.html
   My bibliography  Save this article

Optimal sizing of energy storage system and its cost-benefit analysis for power grid planning with intermittent wind generation

Author

Listed:
  • Xia, Shiwei
  • Chan, K.W.
  • Luo, Xiao
  • Bu, Siqi
  • Ding, Zhaohao
  • Zhou, Bin

Abstract

Energy storage system (ESS) is a key technology to accommodate the uncertainties of renewables. However, ESS at an improper size would result in no-reasonable installation, operation and maintenance costs. With concerns on these costs outweighing ESS operating profit, this paper establishes a stochastic model to size ESS for power grid planning with intermittent wind generation. In the model, the hourly-based marginal distributions with covariance is first derived from historical data of wind generation, and a stochastic cost-benefit analysis model with consideration of the generation fuel cost expectation and ESS amortized daily capital cost is formed. Then a hybrid solution approach combining the Point Estimated method and the parallel Branch and Bound algorithm (PE-BB) is designed to solve the model. Finally, the stochastic model and PE-BB approach are thoroughly tested on the 10-unit and 26-unit systems with uncertain wind generation. Simulation results confirmed the proposed model and PE-BB approach are effective to optimize ESS size for power grid planning with intermittent wind generation. The cost-benefit investigations on four typical ESSs also indicated that the ESS capital cost, charging/discharging efficiency and lifetime are important properties for optimizing ESS size, and it is not always economically justifiable to install ESS in power system.

Suggested Citation

  • Xia, Shiwei & Chan, K.W. & Luo, Xiao & Bu, Siqi & Ding, Zhaohao & Zhou, Bin, 2018. "Optimal sizing of energy storage system and its cost-benefit analysis for power grid planning with intermittent wind generation," Renewable Energy, Elsevier, vol. 122(C), pages 472-486.
  • Handle: RePEc:eee:renene:v:122:y:2018:i:c:p:472-486
    DOI: 10.1016/j.renene.2018.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118301538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jianwei & Gee, Anthony M. & Zhang, Min & Yuan, Weijia, 2015. "Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model," Energy, Elsevier, vol. 86(C), pages 175-185.
    2. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    3. Omu, Akomeno & Hsieh, Shanshan & Orehounig, Kristina, 2016. "Mixed integer linear programming for the design of solar thermal energy systems with short-term storage," Applied Energy, Elsevier, vol. 180(C), pages 313-326.
    4. DeForest, Nicholas & Mendes, Gonçalo & Stadler, Michael & Feng, Wei & Lai, Judy & Marnay, Chris, 2014. "Optimal deployment of thermal energy storage under diverse economic and climate conditions," Applied Energy, Elsevier, vol. 119(C), pages 488-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadeusz Mączka & Halina Pawlak-Kruczek & Lukasz Niedzwiecki & Edward Ziaja & Artur Chorążyczewski, 2020. "Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MW el Power Unit," Energies, MDPI, vol. 13(19), pages 1-16, September.
    2. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    3. Qihui Yu & Li Tian & Xiaodong Li & Xin Tan, 2022. "Compressed Air Energy Storage Capacity Configuration and Economic Evaluation Considering the Uncertainty of Wind Energy," Energies, MDPI, vol. 15(13), pages 1-30, June.
    4. Trivedi, Anupam & Chong Aih, Hau & Srinivasan, Dipti, 2020. "A stochastic cost–benefit analysis framework for allocating energy storage system in distribution network for load leveling," Applied Energy, Elsevier, vol. 280(C).
    5. Azim Heydari & Meysam Majidi Nezhad & Mehdi Neshat & Davide Astiaso Garcia & Farshid Keynia & Livio De Santoli & Lina Bertling Tjernberg, 2021. "A Combined Fuzzy GMDH Neural Network and Grey Wolf Optimization Application for Wind Turbine Power Production Forecasting Considering SCADA Data," Energies, MDPI, vol. 14(12), pages 1-13, June.
    6. Hyung Tae Kim & Young Gyu Jin & Yong Tae Yoon, 2019. "An Economic Analysis of Load Leveling with Battery Energy Storage Systems (BESS) in an Electricity Market Environment: The Korean Case," Energies, MDPI, vol. 12(9), pages 1-16, April.
    7. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    8. Xie, Rui & Wei, Wei & Li, Mingxuan & Dong, ZhaoYang & Mei, Shengwei, 2023. "Sizing capacities of renewable generation, transmission, and energy storage for low-carbon power systems: A distributionally robust optimization approach," Energy, Elsevier, vol. 263(PA).
    9. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Kotarela, F. & Kyritsis, A. & Papanikolaou, N. & Kalogirou, S.A., 2021. "Enhanced nZEB concept incorporating a sustainable Grid Support Scheme," Renewable Energy, Elsevier, vol. 169(C), pages 714-725.
    11. Terkes, Musa & Arikan, Oktay & Gokalp, Erdin, 2024. "The effect of electric vehicle charging demand variability on optimal hybrid power systems with second-life lithium-ion or fresh Na–S batteries considering power quality," Energy, Elsevier, vol. 288(C).
    12. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    13. Gu, Chenjia & Wang, Jianxue & Zhang, Yao & Li, Qingtao & Chen, Yang, 2022. "Optimal energy storage planning for stacked benefits in power distribution network," Renewable Energy, Elsevier, vol. 195(C), pages 366-380.
    14. Berrada, Asmae, 2022. "Financial and economic modeling of large-scale gravity energy storage system," Renewable Energy, Elsevier, vol. 192(C), pages 405-419.
    15. Kim, Taewan & Song, Jeonghwan & You, Donghyun, 2024. "Optimization of a wind farm layout to mitigate the wind power intermittency," Applied Energy, Elsevier, vol. 367(C).
    16. Heejung Park, 2021. "A Stochastic Planning Model for Battery Energy Storage Systems Coupled with Utility-Scale Solar Photovoltaics," Energies, MDPI, vol. 14(5), pages 1-13, February.
    17. Chen, Yahong & Deng, Changhong & Yao, Weiwei & Liang, Ning & Xia, Pei & Cao, Peng & Dong, Yiwang & Zhang, Yuan-ao & Liu, Zhichao & Li, Dinglin & Chen, Man & Peng, Peng, 2019. "Impacts of stochastic forecast errors of renewable energy generation and load demands on microgrid operation," Renewable Energy, Elsevier, vol. 133(C), pages 442-461.
    18. Lai, Chun Sing & Locatelli, Giorgio & Pimm, Andrew & Tao, Yingshan & Li, Xuecong & Lai, Loi Lei, 2019. "A financial model for lithium-ion storage in a photovoltaic and biogas energy system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Yu Hu & David Soler Soneira & Mar'ia Jes'us S'anchez, 2020. "Barriers to grid-connected battery systems: Evidence from the Spanish electricity market," Papers 2007.00486, arXiv.org, revised Nov 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    2. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    3. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    4. Yunlong Zhang & Panhong Zhang & Sheng Du & Hanlin Dong, 2024. "Economic Optimal Scheduling of Integrated Energy System Considering Wind–Solar Uncertainty and Power to Gas and Carbon Capture and Storage," Energies, MDPI, vol. 17(11), pages 1-26, June.
    5. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    6. Luca Urbanucci & Francesco D’Ettorre & Daniele Testi, 2019. "A Comprehensive Methodology for the Integrated Optimal Sizing and Operation of Cogeneration Systems with Thermal Energy Storage," Energies, MDPI, vol. 12(5), pages 1-17, March.
    7. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    8. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    9. Silverman, Rochelle E. & Flores, Robert J. & Brouwer, Jack, 2020. "Energy and economic assessment of distributed renewable gas and electricity generation in a small disadvantaged urban community," Applied Energy, Elsevier, vol. 280(C).
    10. Wang, Shuoqi & Guo, Dongxu & Han, Xuebing & Lu, Languang & Sun, Kai & Li, Weihan & Sauer, Dirk Uwe & Ouyang, Minggao, 2020. "Impact of battery degradation models on energy management of a grid-connected DC microgrid," Energy, Elsevier, vol. 207(C).
    11. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    12. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    13. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.
    14. Zezhong Li & Xiangang Peng & Yilin Xu & Fucheng Zhong & Sheng Ouyang & Kaiguo Xuan, 2023. "A Stackelberg Game-Based Model of Distribution Network-Distributed Energy Storage Systems Considering Demand Response," Mathematics, MDPI, vol. 12(1), pages 1-21, December.
    15. Ju, Liwei & Lu, Xiaolong & Yang, Shenbo & Li, Gen & Fan, Wei & Pan, Yushu & Qiao, Huiting, 2022. "A multi-time scale dispatching optimal model for rural biomass waste energy conversion system-based micro-energy grid considering multi-energy demand response," Applied Energy, Elsevier, vol. 327(C).
    16. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Tong Xing & Hongyu Lin & Zhongfu Tan & Liwei Ju, 2019. "Coordinated Energy Management for Micro Energy Systems Considering Carbon Emissions Using Multi-Objective Optimization," Energies, MDPI, vol. 12(23), pages 1-27, November.
    18. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Luis Fernando Grisales-Noreña & Carlos Andrés Ramos-Paja & Daniel Gonzalez-Montoya & Gerardo Alcalá & Quetzalcoatl Hernandez-Escobedo, 2020. "Energy Management in PV Based Microgrids Designed for the Universidad Nacional de Colombia," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    20. González-Garrido, A. & Gaztañaga, H. & Saez-de-Ibarra, A. & Milo, A. & Eguia, P., 2020. "Electricity and reserve market bidding strategy including sizing evaluation and a novel renewable complementarity-based centralized control for storage lifetime enhancement," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:122:y:2018:i:c:p:472-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.