IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221032643.html
   My bibliography  Save this article

Affine-arithmetic-based microgrid interval optimization considering uncertainty and battery energy storage system degradation

Author

Listed:
  • Zhang, Xuehan
  • Son, Yongju
  • Cheong, Taesu
  • Choi, Sungyun

Abstract

Microgrids can effectively integrate renewable energy sources (RESs) and provide power for local customers. However, uncertainties of RESs and loads pose challenges to microgrid operation. The traditional point optimization method is unrealistic, and the widely used stochastic optimization (SO) method is time-consuming. Besides, battery energy storage systems (BESSs) are critical dispatchable devices to alleviate adverse effects of uncertainty, so an accurate nonlinear degradation cost model of BESSs should also be proposed. To handle such problems, the paper proposes an affine–arithmetic (AA)-based microgrid interval optimization (IO) method considering uncertainty and BESS degradation. First, the AA theory is introduced to model the RES and load variation ranges as intervals and calculate the interval uncertainty. Then, a nonlinear BESS degradation cost model is proposed, which can assess battery degradation costs considering different charging and discharging behaviors. The nondominated sorting genetic algorithm-II (NSGA-II) is employed to solve the proposed microgrid IO framework. For validation, the proposed IO method was compared with the point optimization method and SO method under various uncertainty realizations in a modified IEEE 33 bus system. The simulation results indicated the effectiveness of the proposed IO method in terms of an equilibrium between the simulation time and optimization performance.

Suggested Citation

  • Zhang, Xuehan & Son, Yongju & Cheong, Taesu & Choi, Sungyun, 2022. "Affine-arithmetic-based microgrid interval optimization considering uncertainty and battery energy storage system degradation," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032643
    DOI: 10.1016/j.energy.2021.123015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.123015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
    2. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.
    3. Chen, Yingwen & Wong, Christina W.Y. & Yang, Rui & Miao, Xin, 2021. "Optimal structure adjustment strategy, emission reduction potential and utilization efficiency of fossil energies in China," Energy, Elsevier, vol. 237(C).
    4. Verástegui, Felipe & Lorca, Álvaro & Olivares, Daniel & Negrete-Pincetic, Matias, 2021. "Optimization-based analysis of decarbonization pathways and flexibility requirements in highly renewable power systems," Energy, Elsevier, vol. 234(C).
    5. Wei, F. & Wu, Q.H. & Jing, Z.X. & Chen, J.J. & Zhou, X.X., 2016. "Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach," Energy, Elsevier, vol. 111(C), pages 933-946.
    6. Bae, Jeong Hwan & Rishi, Meenakshi & Li, Dmitriy, 2021. "Consumer preferences for a green certificate program in South Korea," Energy, Elsevier, vol. 230(C).
    7. Mah, Angel Xin Yee & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Ling, Gabriel Hoh Teck & Ho, Chin Siong & Muis, Zarina Ab, 2021. "Optimization of a standalone photovoltaic-based microgrid with electrical and hydrogen loads," Energy, Elsevier, vol. 235(C).
    8. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.
    9. Wu, Di & Ma, Xu & Huang, Sen & Fu, Tao & Balducci, Patrick, 2020. "Stochastic optimal sizing of distributed energy resources for a cost-effective and resilient Microgrid," Energy, Elsevier, vol. 198(C).
    10. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    11. Gomes, I.L.R. & Melicio, R. & Mendes, V.M.F., 2021. "A novel microgrid support management system based on stochastic mixed-integer linear programming," Energy, Elsevier, vol. 223(C).
    12. Han, Sekyung & Han, Soohee & Aki, Hirohisa, 2014. "A practical battery wear model for electric vehicle charging applications," Applied Energy, Elsevier, vol. 113(C), pages 1100-1108.
    13. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    14. Ma, Deyin & Zhang, Lizhi & Sun, Bo, 2021. "An interval scheduling method for the CCHP system containing renewable energy sources based on model predictive control," Energy, Elsevier, vol. 236(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yuxin & Jiang, Yuewen, 2023. "Interval energy flow calculation method for electricity-heat-hydrogen integrated energy system considering the correlation between variables," Energy, Elsevier, vol. 263(PB).
    2. Xuehan Zhang & Yongju Son & Sungyun Choi, 2022. "Optimal Scheduling of Battery Energy Storage Systems and Demand Response for Distribution Systems with High Penetration of Renewable Energy Sources," Energies, MDPI, vol. 15(6), pages 1-18, March.
    3. Zhu, Yansong & Liu, Jizhen & Hu, Yong & Xie, Yan & Zeng, Deliang & Li, Ruilian, 2024. "Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy," Energy, Elsevier, vol. 288(C).
    4. Dong, Yingchao & Zhang, Hongli & Ma, Ping & Wang, Cong & Zhou, Xiaojun, 2023. "A hybrid robust-interval optimization approach for integrated energy systems planning under uncertainties," Energy, Elsevier, vol. 274(C).
    5. Lu, Xi & Xia, Shiwei & Gu, Wei & Chan, Ka Wing, 2022. "A model for balance responsible distribution systems with energy storage to achieve coordinated load shifting and uncertainty mitigation," Energy, Elsevier, vol. 249(C).
    6. Fei Feng & Xin Du & Qiang Si & Hao Cai, 2022. "Hybrid Game Optimization of Microgrid Cluster (MC) Based on Service Provider (SP) and Tiered Carbon Price," Energies, MDPI, vol. 15(14), pages 1-22, July.
    7. Lin, Yu-Hsiu & Shen, Ting-Yu, 2023. "Novel cell screening and prognosing based on neurocomputing-based multiday-ahead time-series forecasting for predictive maintenance of battery modules in frequency regulation-energy storage systems," Applied Energy, Elsevier, vol. 351(C).
    8. Wang, Sen & Li, Fengting & Zhang, Gaohang & Yin, Chunya, 2023. "Analysis of energy storage demand for peak shaving and frequency regulation of power systems with high penetration of renewable energy," Energy, Elsevier, vol. 267(C).
    9. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    10. Gao, Xinjia & Wu, Xiaogang & Xia, Yinlong & Li, Yalun, 2024. "Life extension of a multi-unit energy storage system by optimizing the power distribution based on the degradation ratio," Energy, Elsevier, vol. 286(C).
    11. Xie, Rui & Wei, Wei & Li, Mingxuan & Dong, ZhaoYang & Mei, Shengwei, 2023. "Sizing capacities of renewable generation, transmission, and energy storage for low-carbon power systems: A distributionally robust optimization approach," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    2. Castillejo-Cuberos, A. & Cardemil, J.M. & Escobar, R., 2023. "Techno-economic assessment of photovoltaic plants considering high temporal resolution and non-linear dynamics of battery storage," Applied Energy, Elsevier, vol. 334(C).
    3. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    4. Wei, Jingdong & Zhang, Yao & Wang, Jianxue & Cao, Xiaoyu & Khan, Muhammad Armoghan, 2020. "Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method," Applied Energy, Elsevier, vol. 260(C).
    5. Li, Ke & Yang, Fan & Wang, Lupan & Yan, Yi & Wang, Haiyang & Zhang, Chenghui, 2022. "A scenario-based two-stage stochastic optimization approach for multi-energy microgrids," Applied Energy, Elsevier, vol. 322(C).
    6. Yang, Dongfeng & Jiang, Chao & Cai, Guowei & Yang, Deyou & Liu, Xiaojun, 2020. "Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand," Applied Energy, Elsevier, vol. 277(C).
    7. Ahn, Yuchan & Han, Jeehoon, 2018. "Economic optimization of integrated network for utility supply and carbon dioxide mitigation with multi-site and multi-period demand uncertainties," Applied Energy, Elsevier, vol. 220(C), pages 723-734.
    8. Liu, Xuezhi & Yan, Zheng & Wu, Jianzhong, 2019. "Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices," Applied Energy, Elsevier, vol. 248(C), pages 256-273.
    9. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    10. Jhony Guzman-Henao & Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Oscar Danilo Montoya, 2023. "Optimal Integration of Photovoltaic Systems in Distribution Networks from a Technical, Financial, and Environmental Perspective," Energies, MDPI, vol. 16(1), pages 1-19, January.
    11. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    12. Song, Xiaoling & Wang, Yudong & Zhang, Zhe & Shen, Charles & Peña-Mora, Feniosky, 2021. "Economic-environmental equilibrium-based bi-level dispatch strategy towards integrated electricity and natural gas systems," Applied Energy, Elsevier, vol. 281(C).
    13. Qin, Chao & Yan, Qingyou & He, Gang, 2019. "Integrated energy systems planning with electricity, heat and gas using particle swarm optimization," Energy, Elsevier, vol. 188(C).
    14. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    15. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    16. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    17. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    18. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    19. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    20. Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.