IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v138y2020ics0301421519308067.html
   My bibliography  Save this article

EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios

Author

Listed:
  • Krause, Jette
  • Thiel, Christian
  • Tsokolis, Dimitrios
  • Samaras, Zissis
  • Rota, Christian
  • Ward, Andy
  • Prenninger, Peter
  • Coosemans, Thierry
  • Neugebauer, Stephan
  • Verhoeve, Wim

Abstract

To inform long-term policies on transport decarbonisation, the present paper analyses European road transport CO2 emission reduction options by 2050. The investigation focusses on measures improving tank to wheel vehicle efficiency, but takes into account upstream emissions of electric vehicles. Measures for vehicle efficiency improvement, transport smoothing, and transport reduction, as well as possible 2050 road vehicle fleet compositions have been quantified through expert group discussion and combined with fleet impact modelling to calculate scenario results.

Suggested Citation

  • Krause, Jette & Thiel, Christian & Tsokolis, Dimitrios & Samaras, Zissis & Rota, Christian & Ward, Andy & Prenninger, Peter & Coosemans, Thierry & Neugebauer, Stephan & Verhoeve, Wim, 2020. "EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios," Energy Policy, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421519308067
    DOI: 10.1016/j.enpol.2019.111224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519308067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.111224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pasaoglu, Guzay & Honselaar, Michel & Thiel, Christian, 2012. "Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe," Energy Policy, Elsevier, vol. 40(C), pages 404-421.
    2. Shafiei, Ehsan & Thorkelsson, Hedinn & Ásgeirsson, Eyjólfur Ingi & Davidsdottir, Brynhildur & Raberto, Marco & Stefansson, Hlynur, 2012. "An agent-based modeling approach to predict the evolution of market share of electric vehicles: A case study from Iceland," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1638-1653.
    3. Siskos, Pelopidas & Zazias, Georgios & Petropoulos, Apostolos & Evangelopoulou, Stavroula & Capros, Pantelis, 2018. "Implications of delaying transport decarbonisation in the EU: A systems analysis using the PRIMES model," Energy Policy, Elsevier, vol. 121(C), pages 48-60.
    4. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    5. O. Y. Edelenbosch & A. F. Hof & B. Nykvist & B. Girod & D. P. Vuuren, 2018. "Transport electrification: the effect of recent battery cost reduction on future emission scenarios," Climatic Change, Springer, vol. 151(2), pages 95-108, November.
    6. Kloess, Maximilian & Müller, Andreas, 2011. "Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in Austria--A model based analysis 2010-2050," Energy Policy, Elsevier, vol. 39(9), pages 5045-5062, September.
    7. Kihm, Alexander & Trommer, Stefan, 2014. "The new car market for electric vehicles and the potential for fuel substitution," Energy Policy, Elsevier, vol. 73(C), pages 147-157.
    8. Pasaoglu, Guzay & Harrison, Gillian & Jones, Lee & Hill, Andrew & Beaudet, Alexandre & Thiel, Christian, 2016. "A system dynamics based market agent model simulating future powertrain technology transition: Scenarios in the EU light duty vehicle road transport sector," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 133-146.
    9. Sorrentino, Marco & Rizzo, Gianfranco & Sorrentino, Luca, 2014. "A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic green house emissions," Applied Energy, Elsevier, vol. 120(C), pages 31-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Junyi & Hayashi, Yoshitsugu & Frank, Lawrence D., 2021. "COVID-19 and transport: Findings from a world-wide expert survey," Transport Policy, Elsevier, vol. 103(C), pages 68-85.
    2. Beatrice, C. & Capasso, C. & Doulgeris, S. & Samaras, Z. & Veneri, O., 2024. "Hybrid storage system management for hybrid electric vehicles under real operating conditions," Applied Energy, Elsevier, vol. 354(PB).
    3. Vladimír Konečný & Jozef Gnap & Tomáš Settey & František Petro & Tomáš Skrúcaný & Tomasz Figlus, 2020. "Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe," Energies, MDPI, vol. 13(15), pages 1-23, July.
    4. Zongfei Wang & Patrick Jochem & Hasan Ümitcan Yilmaz & Lei Xu, 2022. "Integrating vehicle‐to‐grid technology into energy system models: Novel methods and their impact on greenhouse gas emissions," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 392-405, April.
    5. Seungho Jeon & Minyoung Roh & Almas Heshmati & Suduk Kim, 2020. "An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea," Energies, MDPI, vol. 13(17), pages 1-13, September.
    6. Alexander Blinn & Henrik te Heesen, 2022. "UCB-SEnMod : A Model for Analyzing Future Energy Systems with 100% Renewable Energy Technologies—Methodology," Energies, MDPI, vol. 15(12), pages 1-22, June.
    7. Tamba, Marie & Krause, Jette & Weitzel, Matthias & Ioan, Raileanu & Duboz, Louison & Grosso, Monica & Vandyck, Toon, 2022. "Economy-wide impacts of road transport electrification in the EU," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    8. Karolina Godzisz & Maciej Dzikuć & Piotr Kułyk & Arkadiusz Piwowar & Piotr Kuryło & Szymon Szufa, 2021. "Selected Determinants of Sustainable Transport in the Context of the Development of a Low-Carbon Economy in Poland," Energies, MDPI, vol. 14(17), pages 1-14, August.
    9. Tsemekidi Tzeiranaki, Sofia & Economidou, Marina & Bertoldi, Paolo & Thiel, Christian & Fontaras, Georgios & Clementi, Enrico Luca & Franco De Los Rios, Camilo, 2023. "“The impact of energy efficiency and decarbonisation policies on the European road transport sector”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    10. Ceccato, Riccardo & Rossi, Riccardo & Gastaldi, Massimiliano, 2024. "Low emission zone and mobility behavior: Ex-ante evaluation of vehicle pollutant emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    11. Xiao, Lin & Guan, Yuru & Guo, Yaqin & Xue, Rui & Li, Jiashuo & Shan, Yuli, 2022. "Emission accounting and drivers in 2004 EU accession countries," Applied Energy, Elsevier, vol. 314(C).
    12. Maja Mutavdžija & Matija Kovačić & Krešimir Buntak, 2022. "Assessment of Selected Factors Influencing the Purchase of Electric Vehicles—A Case Study of the Republic of Croatia," Energies, MDPI, vol. 15(16), pages 1-25, August.
    13. Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa, 2022. "Assessment of the Road Traffic Air Pollution in Urban Contexts: A Statistical Approach," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    14. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. František Pollák & Josef Vodák & Jakub Soviar & Peter Markovič & Gianluca Lentini & Valerio Mazzeschi & Alessandro Luè, 2021. "Promotion of Electric Mobility in the European Union—Overview of Project PROMETEUS from the Perspective of Cohesion through Synergistic Cooperation on the Example of the Catching-Up Region," Sustainability, MDPI, vol. 13(3), pages 1-26, February.
    16. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Tests for Vehicles with Diesel Engines," Energies, MDPI, vol. 14(2), pages 1-30, January.
    17. Klimenko, V.V. & Ratner, S.V. & Tereshin, A.G., 2021. "Constraints imposed by key-material resources on renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    19. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    20. Elham Heidari & Sona Bikdeli & Mohammad Reza Mansouri Daneshvar, 2023. "A dynamic model for CO2 emissions induced by urban transportation during 2005–2030, a case study of Mashhad, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4217-4236, May.
    21. Xu, Jin-Hua & Guo, Jian-Feng & Peng, Binbin & Nie, Hongguang & Kemp, Rene, 2020. "Energy growth sources and future energy-saving potentials in passenger transportation sector in China," Energy, Elsevier, vol. 206(C).
    22. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco, 2022. "Decarbonising transport in Europe: Trends, goals, policies and passenger car scenarios," Research in Transportation Economics, Elsevier, vol. 91(C).
    23. Maciej Neugebauer & Adam Żebrowski & Ogulcan Esmer, 2022. "Cumulative Emissions of CO 2 for Electric and Combustion Cars: A Case Study on Specific Models," Energies, MDPI, vol. 15(7), pages 1-17, April.
    24. Huang, Xiaohui & Huang, Qi & Cao, Huajun & Yan, Wanbin & Cao, Le & Zhang, Qiongzhi, 2023. "Optimal design for improving operation performance of electric construction machinery collaborative system: Method and application," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    2. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    3. Harrison, Gillian & Thiel, Christian, 2017. "An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 165-178.
    4. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2015. "Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system," Energy, Elsevier, vol. 83(C), pages 614-627.
    5. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    6. Arne Höltl & Cathy Macharis & Klaas De Brucker, 2017. "Pathways to Decarbonise the European Car Fleet: A Scenario Analysis Using the Backcasting Approach," Energies, MDPI, vol. 11(1), pages 1-20, December.
    7. Thiel, Christian & Nijs, Wouter & Simoes, Sofia & Schmidt, Johannes & van Zyl, Arnold & Schmid, Erwin, 2016. "The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation," Energy Policy, Elsevier, vol. 96(C), pages 153-166.
    8. Siskos, Pelopidas & Zazias, Georgios & Petropoulos, Apostolos & Evangelopoulou, Stavroula & Capros, Pantelis, 2018. "Implications of delaying transport decarbonisation in the EU: A systems analysis using the PRIMES model," Energy Policy, Elsevier, vol. 121(C), pages 48-60.
    9. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi & Keith, David R., 2016. "Analysis of supply-push strategies governing the transition to biofuel vehicles in a market-oriented renewable energy system," Energy, Elsevier, vol. 94(C), pages 409-421.
    10. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Georgios Zazias & Pantelis Capros, 2019. "Factors Influencing Electric Vehicle Penetration in the EU by 2030: A Model-Based Policy Assessment," Energies, MDPI, vol. 12(14), pages 1-25, July.
    11. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    13. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
    15. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    16. Nugroho, Rizqi Ilma & Gnann, Till & Speth, Daniel & Purwanto, Widodo Wahyu & Hanafi, Jessica & Soehodho, Sutanto, 2024. "Agent-based simulation for market diffusion of passenger cars and motorcycles BEV in Greater Jakarta Area," Working Papers "Sustainability and Innovation" S05/2024, Fraunhofer Institute for Systems and Innovation Research (ISI).
    17. González Palencia, Juan C. & Otsuka, Yuki & Araki, Mikiya & Shiga, Seiichi, 2017. "Scenario analysis of lightweight and electric-drive vehicle market penetration in the long-term and impact on the light-duty vehicle fleet," Applied Energy, Elsevier, vol. 204(C), pages 1444-1462.
    18. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
    19. Newbery, David & Strbac, Goran, 2016. "What is needed for battery electric vehicles to become socially cost competitive?," Economics of Transportation, Elsevier, vol. 5(C), pages 1-11.
    20. Karolina Godzisz & Maciej Dzikuć & Piotr Kułyk & Arkadiusz Piwowar & Piotr Kuryło & Szymon Szufa, 2021. "Selected Determinants of Sustainable Transport in the Context of the Development of a Low-Carbon Economy in Poland," Energies, MDPI, vol. 14(17), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421519308067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.