IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v224y2021ics0360544221003364.html
   My bibliography  Save this article

Self-heating inflatable lifejacket using gas generating agent as energy source

Author

Listed:
  • Han, Zhiyue
  • Wang, Wenjie
  • Du, Zhiming
  • Zhang, Yupeng
  • Yu, Yue

Abstract

Cold is an important cause of the death of people who fall into the water. The use of a gas generating agent to inflate an inflatable lifejacket is a kind of self-heating inflatable lifejacket, which maintains the inflation effect and portability of the original lifejacket and can also play an auxiliary heating effect. In this paper, a nitrogen-rich substance, 5-aminotetrazole 3-nitro-1,2,4-triazole (5ATNTZ) was synthesized, together with the selected oxidant and binder to complete the preparation of the gas generating agent. Commercial life jackets were selected for inflation test to explore the actual dosage and inflation effect of gas generating agent. The experimental results show that when the amount of gas generating agent is 19 g, the amount of physical coolant is 20 g, and the amount of chemical coolant is 7 g, the lifejacket is inflated and its surface temperature reaches at least 40.3 °C. The energy utilization efficiency reaches 75.17% when the chemical energy of the gas generating agent is converted into the heat of the bag and inflation work in the whole inflation process. Therefore, the gas-filled lifejacket using a gas generating agent has a good auxiliary heat effect, and is a type of self-heating inflatable lifejacket with excellent performance, which has great application value.

Suggested Citation

  • Han, Zhiyue & Wang, Wenjie & Du, Zhiming & Zhang, Yupeng & Yu, Yue, 2021. "Self-heating inflatable lifejacket using gas generating agent as energy source," Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221003364
    DOI: 10.1016/j.energy.2021.120087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221003364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Tae Young & Negash, Assmelash A. & Cho, Gyubaek, 2017. "Experimental study of energy utilization effectiveness of thermoelectric generator on diesel engine," Energy, Elsevier, vol. 128(C), pages 531-539.
    2. Jain, Tanmay & Sheth, Pratik N., 2019. "Design of energy utilization test for a biomass cook stove: Formulation of an optimum air flow recipe," Energy, Elsevier, vol. 166(C), pages 1097-1105.
    3. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    4. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).
    5. Sonawat, Arihant & Kim, Seung-Jun & Yang, Hyeon-Mo & Choi, Young-Seok & Kim, Kyung-Min & Lee, Yong-Kab & Kim, Jin-Hyuk, 2020. "Positive displacement turbine - A novel solution to the pressure differential control valve failure problem and energy utilization," Energy, Elsevier, vol. 190(C).
    6. Zhao, Bin & Ren, Yi & Gao, Diankui & Xu, Lizhi & Zhang, Yuanyuan, 2019. "Energy utilization efficiency evaluation model of refining unit Based on Contourlet neural network optimized by improved grey optimization algorithm," Energy, Elsevier, vol. 185(C), pages 1032-1044.
    7. Jiang, Yan & Jiang, Jiuchun & Zhang, Caiping & Zhang, Weige & Gao, Yang & Mi, Chris, 2019. "A Copula-based battery pack consistency modeling method and its application on the energy utilization efficiency estimation," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    2. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    3. Aljaghtham, Mutabe & Celik, Emrah, 2020. "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, Elsevier, vol. 200(C).
    4. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    5. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    6. Ma, Chen & Chang, Long & Cui, Naxin & Duan, Bin & Zhang, Yulong & Yu, Zhihao, 2022. "Statistical relationships between numerous retired lithium-ion cells and packs with random sampling for echelon utilization," Energy, Elsevier, vol. 257(C).
    7. Hamlehdar, Maryam & Yousefi, Hossein & Noorollahi, Younes & Mohammadi, Mohammad, 2022. "Energy recovery from water distribution networks using micro hydropower: A case study in Iran," Energy, Elsevier, vol. 252(C).
    8. Jin, Qinglong & Xia, Shaojun & Chen, Lingen, 2023. "A modified recompression S–CO2 Brayton cycle and its thermodynamic optimization," Energy, Elsevier, vol. 263(PE).
    9. Luo, Zhenmin & Kang, Xiaofeng & Wang, Tao & Su, Bin & Cheng, Fangming & Deng, Jun, 2021. "Effects of an obstacle on the deflagration behavior of premixed liquefied petroleum gas-air mixtures in a closed duct," Energy, Elsevier, vol. 234(C).
    10. Sonawat, Arihant & Kim, Sung & Ma, Sang-Bum & Kim, Seung-Jun & Lee, Ju Beak & Yu, Myo Suk & Kim, Jin-Hyuk, 2022. "Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump," Energy, Elsevier, vol. 252(C).
    11. Kim, Tae Young & Kim, Junghwan, 2018. "Assessment of the energy recovery potential of a thermoelectric generator system for passenger vehicles under various drive cycles," Energy, Elsevier, vol. 143(C), pages 363-371.
    12. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Performance optimization of diffusive mass transfer law irreversible isothermal chemical pump," Energy, Elsevier, vol. 263(PC).
    13. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    14. Turki Ali Alghamdi, 2020. "Energy efficient protocol in wireless sensor network: optimized cluster head selection model," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(3), pages 331-345, July.
    15. Tae Young Kim, 2021. "Prediction of System-Level Energy Harvesting Characteristics of a Thermoelectric Generator Operating in a Diesel Engine Using Artificial Neural Networks," Energies, MDPI, vol. 14(9), pages 1-14, April.
    16. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Lingen Chen & Kang Ma & Huijun Feng & Yanlin Ge, 2020. "Optimal Configuration of a Gas Expansion Process in a Piston-Type Cylinder with Generalized Convective Heat Transfer Law," Energies, MDPI, vol. 13(12), pages 1-20, June.
    18. Brian Gumino & Nicholas A. Pohlman & Jonathan Barnes & Paul Wever, 2020. "Design Features and Performance Evaluation of Natural-Draft, Continuous Operation Gasifier Cookstove," Clean Technol., MDPI, vol. 2(3), pages 1-18, July.
    19. Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power of irreversible multistage chemical engine with linear mass transfer law using HJB theory," Energy, Elsevier, vol. 261(PB).
    20. Sai, Wei & Pan, Zehua & Liu, Siyu & Jiao, Zhenjun & Zhong, Zheng & Miao, Bin & Chan, Siew Hwa, 2023. "Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221003364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.