Performance optimization of non-isothermal endoreversible chemical pump via Lewis analogy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131582
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lin, Guoxing & Chen, Jincan, 2001. "Optimal analysis on the cyclic performance of a class of chemical pumps," Applied Energy, Elsevier, vol. 70(1), pages 35-47, September.
- Lin, Guoxing & Chen, Jincan & Brück, Ekkes, 2004. "Irreversible chemical-engines and their optimal performance analysis," Applied Energy, Elsevier, vol. 78(2), pages 123-136, June.
- Zhao, Jun & Fu, Jianxin & Deng, Shuai & Wang, Junyao & Xu, Yaofeng, 2020. "Decoupled thermal-driven absorption-based CO2 capture into heat engine plus carbon pump: A new understanding with the case study," Energy, Elsevier, vol. 210(C).
- Dan Xia & Lingen Chen & Fengrui Sun, 2010. "Ecological optimization of an endoreversible chemical pump," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 5(4), pages 283-290, August.
- Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power output of endoreversible non-isothermal chemical engine via linear irreversible thermodynamics," Energy, Elsevier, vol. 255(C).
- Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power of irreversible multistage chemical engine with linear mass transfer law using HJB theory," Energy, Elsevier, vol. 261(PB).
- Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
- Chen, Lingen & Xia, Shaojun, 2023. "Maximum work configuration for irreversible finite-heat-capacity source engines by applying averaged-optimal-control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
- Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Performance optimization of diffusive mass transfer law irreversible isothermal chemical pump," Energy, Elsevier, vol. 263(PC).
- David Diskin & Leonid Tartakovsky, 2020. "Efficiency at Maximum Power of the Low-Dissipation Hybrid Electrochemical–Otto Cycle," Energies, MDPI, vol. 13(15), pages 1-10, August.
- Huang, Jialuo & Xia, Shaojun & Chen, Lingen, 2024. "Optimal configurations of ammonia decomposition reactor with minimum power consumption and minimum heat transfer rate," Energy, Elsevier, vol. 293(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Ecological function performance analysis and multi-objective optimization for an endoreversible four-reservoir chemical pump," Energy, Elsevier, vol. 282(C).
- Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Performance optimization of diffusive mass transfer law irreversible isothermal chemical pump," Energy, Elsevier, vol. 263(PC).
- Yang, Wenhao & Feng, Huijun & Chen, Lingen & Ge, Yanlin, 2023. "Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle," Energy, Elsevier, vol. 278(C).
- Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid," Energy, Elsevier, vol. 282(C).
- Huang, Jialuo & Xia, Shaojun & Chen, Lingen, 2024. "Optimal configurations of ammonia decomposition reactor with minimum power consumption and minimum heat transfer rate," Energy, Elsevier, vol. 293(C).
- Qi, Congzheng & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2023. "Three-heat-reservoir thermal Brownian heat transformer and its performance limits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
- Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
- Ge, Yanlin & Wu, Heng & Chen, Lingen & Feng, Huijun & Xie, Zhihui, 2023. "Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle," Energy, Elsevier, vol. 270(C).
- Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power output of endoreversible non-isothermal chemical engine via linear irreversible thermodynamics," Energy, Elsevier, vol. 255(C).
- Jin, Qinglong & Xia, Shaojun & Chen, Lingen, 2023. "A modified recompression S–CO2 Brayton cycle and its thermodynamic optimization," Energy, Elsevier, vol. 263(PE).
- Chen, Lingen & Xia, Shaojun, 2023. "Maximum work configuration for irreversible finite-heat-capacity source engines by applying averaged-optimal-control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
- Xia, Dan & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2007. "Endoreversible four-reservoir chemical pump," Applied Energy, Elsevier, vol. 84(1), pages 56-65, January.
- Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
- Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
- Chen, Lingen & Qi, Congzheng & Ge, Yanlin & Feng, Huijun, 2022. "Thermal Brownian heat engine with external and internal irreversibilities," Energy, Elsevier, vol. 255(C).
- Pengchao Zang & Lingen Chen & Yanlin Ge, 2022. "Maximizing Efficient Power for an Irreversible Porous Medium Cycle with Nonlinear Variation of Working Fluid’s Specific Heat," Energies, MDPI, vol. 15(19), pages 1-12, September.
- Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
- Zhang, Z.X. & Xu, H.J., 2023. "Thermodynamic modeling on multi-stage vacuum-pressure swing adsorption (VPSA) for direct air carbon capture with extreme dilute carbon dioxide," Energy, Elsevier, vol. 276(C).
- Jinhu He & Lingen Chen & Yanlin Ge & Shuangshuang Shi & Fang Li, 2022. "Multi-Objective Optimization of an Irreversible Single Resonance Energy-Selective Electron Heat Engine," Energies, MDPI, vol. 15(16), pages 1-19, August.
- Li, Zhaojin & Bi, Yuehong & Wang, Cun & Shi, Qi & Mou, Tianhong, 2023. "Finite time thermodynamic optimization for performance of absorption energy storage systems," Energy, Elsevier, vol. 282(C).
More about this item
Keywords
Endoreversible non-isothermal chemical pump; Vector COP; Rate of energy-pumping; Lewis analogy; Finite time thermodynamics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013550. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.