IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i7p4011-4018.html
   My bibliography  Save this article

Model of a total momentum filtered energy selective electron heat pump affected by heat leakage and its performance characteristics

Author

Listed:
  • Chen, Lingen
  • Ding, Zemin
  • Sun, Fengrui

Abstract

A total momentum filtered energy selective electron (ESE) heat pump model with heat leakage is established in this paper. The analytical expressions of heating load and coefficient of performance (COP) for both the total momentum filtered (kr-filtered) ESE heat pump and the conventionally filtered (kx-filtered) ESE heat pump in which the electrons are transmitted according to the momentum in the direction of transport only are derived, respectively. The optimal performance of the kr-filtered ESE heat pump is analyzed by using the theory of finite time thermodynamics (FTT). The optimal regions of COP and heating load for the kr-filtered heat pump are obtained. By comparing the performance of the kr-filtered device with that of the kx-filtered device, it is found that the heating load performance and the COP versus heating load characteristic curves of the kr-filtered heat pump are totally different from those of the kx-filtered device; and the maximum COP and maximum heating load of the kr-filtered device are generally higher than those of the kx-filtered device. The influences of heat leakage, resonance width, hot reservoir temperature and chemical potential on the performance of the total momentum filtered ESE heat pump are further analyzed by numerical calculations. The obtained results can provide some theoretical guidelines for the design of practical electron systems such as solid-state thermionic heat pump devices.

Suggested Citation

  • Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2011. "Model of a total momentum filtered energy selective electron heat pump affected by heat leakage and its performance characteristics," Energy, Elsevier, vol. 36(7), pages 4011-4018.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4011-4018
    DOI: 10.1016/j.energy.2011.04.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211003148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.04.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    2. Kaushik, S.C & Kumar, S, 2000. "Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses," Energy, Elsevier, vol. 25(10), pages 989-1003.
    3. Salamon, P. & Nulton, J.D. & Siragusa, G. & Andersen, T.R. & Limon, A., 2001. "Principles of control thermodynamics," Energy, Elsevier, vol. 26(3), pages 307-319.
    4. B.-Q. Ai & H.-Z. Xie & D.-H. Wen & X.-M. Liu & L.-G. Liu, 2005. "Heat flow and efficiency in a microscopic engine," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 48(1), pages 101-106, November.
    5. Chen, Lingen & Sun, Fengrui & Chen, Wenzhen, 1995. "Optimization of the specific rate of refrigeration in combined refrigeration cycles," Energy, Elsevier, vol. 20(10), pages 1049-1053.
    6. Wu, Chih & Chen, Lingen & Sun, Fengrui, 1996. "Performance of a regenerative Brayton heat engine," Energy, Elsevier, vol. 21(2), pages 71-76.
    7. Yilbas, B.S. & Sahin, A.Z., 2010. "Thermoelectric device and optimum external load parameter and slenderness ratio," Energy, Elsevier, vol. 35(12), pages 5380-5384.
    8. Sieniutycz, Stanislaw, 2009. "Dynamic bounds for power and efficiency of non-ideal energy converters under nonlinear transfer laws," Energy, Elsevier, vol. 34(3), pages 334-340.
    9. Y. Zhang & B. H. Lin & J. C. Chen, 2006. "Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(4), pages 481-485, October.
    10. Jukka Pekola, 2005. "Tunnelling into the chill," Nature, Nature, vol. 435(7044), pages 889-890, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
    2. Ding, Ze-Min & Chen, Lin-Gen & Wang, Wen-Hua & Ge, Yan-Lin & Sun, Feng-Rui, 2015. "Exploring the operation of a microscopic energy selective electron engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 94-108.
    3. Ding, Ze-Min & Chen, Lin-Gen & Ge, Yan-Lin & Sun, Feng-Rui, 2016. "Performance optimization of total momentum filtering double-resonance energy selective electron heat pump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 49-61.
    4. Su, Shanhe & Chen, Xiaohang & Liao, Tianjun & Chen, Jincan & Shih, Tien-Mo, 2016. "Photon-enhanced electron tunneling solar cells," Energy, Elsevier, vol. 111(C), pages 52-56.
    5. Su, Shanhe & Guo, Juncheng & Su, Guozhen & Chen, Jincan, 2012. "Performance optimum analysis and load matching of an energy selective electron heat engine," Energy, Elsevier, vol. 44(1), pages 570-575.
    6. Su, Guozhen & Pan, Yuzhuo & Zhang, Yanchao & Shih, Tien-Mo & Chen, Jincan, 2016. "An electronic cooling device with multiple energy selective tunnels," Energy, Elsevier, vol. 113(C), pages 723-727.
    7. Zhang, Yanchao & Huang, Chuankun & Wang, Junyi & Lin, Guoxing & Chen, Jincan, 2015. "Optimum energy conversion strategies of a nano-scaled three-terminal quantum dot thermoelectric device," Energy, Elsevier, vol. 85(C), pages 200-207.
    8. Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.
    9. Guo, Juncheng & Zhang, Xiuqin & Su, Guozhen & Chen, Jincan, 2012. "The performance analysis of a micro-/nanoscaled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6432-6439.
    10. Wang, Junyi & Wang, Yuan & Su, Shanhe & Chen, Jincan, 2017. "Simulation design and performance evaluation of a thermoelectric refrigerator with inhomogeneously-doped nanomaterials," Energy, Elsevier, vol. 121(C), pages 427-432.
    11. Yu, Youhong & Ding, Zemin & Chen, Lingen & Wang, Wenhua & Sun, Fengrui, 2016. "Power and efficiency optimization for an energy selective electron heat engine with double-resonance energy filter," Energy, Elsevier, vol. 107(C), pages 287-294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.
    2. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    3. Meng, Fankai & Chen, Lingen & Sun, Fengrui, 2011. "A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities," Energy, Elsevier, vol. 36(5), pages 3513-3522.
    4. Chen, Lingen & Xia, Shaojun, 2022. "Maximizing power of irreversible multistage chemical engine with linear mass transfer law using HJB theory," Energy, Elsevier, vol. 261(PB).
    5. Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Optimal configuration of a two-heat-reservoir heat-engine with heat-leak and finite thermal-capacity," Applied Energy, Elsevier, vol. 83(2), pages 71-81, February.
    6. Marion, Michaël & Louahlia, Hasna & Gualous, Hamid, 2016. "Performances of a CHP Stirling system fuelled with glycerol," Renewable Energy, Elsevier, vol. 86(C), pages 182-191.
    7. Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
    8. Blanco, Jesús M. & Vazquez, L. & Peña, F., 2012. "Investigation on a new methodology for thermal power plant assessment through live diagnosis monitoring of selected process parameters; application to a case study," Energy, Elsevier, vol. 42(1), pages 170-180.
    9. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    10. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    11. Jin, Qinglong & Xia, Shaojun & Chen, Lingen, 2023. "A modified recompression S–CO2 Brayton cycle and its thermodynamic optimization," Energy, Elsevier, vol. 263(PE).
    12. Xu, Haoran & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2022. "Multi-objective optimization of Stirling heat engine with various heat and mechanical losses," Energy, Elsevier, vol. 256(C).
    13. A.M. Tsirlin, & V. Kazakov, & N.A. Alimova & A.A. Ahremenkov, 2005. "Thermodynamic model of capital extraction in economic systems," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 3(1), pages 1-16.
    14. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
    15. Chen, Lingen & Xiaoqin, Zhu & Sun, Fengrui & Wu, Chih, 2007. "Exergy-based ecological optimization for a generalized irreversible Carnot heat-pump," Applied Energy, Elsevier, vol. 84(1), pages 78-88, January.
    16. He, Wei & Wang, Shixue & Zhang, Xing & Li, Yanzhe & Lu, Chi, 2015. "Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat," Energy, Elsevier, vol. 91(C), pages 1-9.
    17. Ni, Mingjiang & Shi, Bingwei & Xiao, Gang & Peng, Hao & Sultan, Umair & Wang, Shurong & Luo, Zhongyang & Cen, Kefa, 2016. "Improved Simple Analytical Model and experimental study of a 100W β-type Stirling engine," Applied Energy, Elsevier, vol. 169(C), pages 768-787.
    18. Parlak, Nezaket & Wagner, Andreas & Elsner, Michael & Soyhan, Hakan S., 2009. "Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions," Renewable Energy, Elsevier, vol. 34(1), pages 266-273.
    19. Chen, Lingen & Zhang, Lei & Xia, Shaojun & Sun, Fengrui, 2018. "Entropy generation minimization for CO2 hydrogenation to light olefins," Energy, Elsevier, vol. 147(C), pages 187-196.
    20. Shu, Gequn & Zhao, Jian & Tian, Hua & Liang, Xingyu & Wei, Haiqiao, 2012. "Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123," Energy, Elsevier, vol. 45(1), pages 806-816.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4011-4018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.