IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222021405.html
   My bibliography  Save this article

Combined steam and dry reforming of methanol process to syngas formation: Kinetic modeling and thermodynamic equilibrium analysis

Author

Listed:
  • Mosayebi, Amir
  • Eghbal Ahmadi, Mohammad Hosein

Abstract

In the present study, the combined steam and dry reforming of methanol (CSDRM) process were performed in the temperature range of 400 °C-900 °C, CO2/H2O ratio of 0.5–2.5 and (CO2+H2O)/CH3OH ratio of 0.5–2.5 at the atmospheric pressure over a Pt/ZrO2 catalyst in fixed bed reactor. The experimental data was applied to model the kinetic of CSDRM reaction based on Langmuir-Hinshelwood (LH) isotherm with one active site on the catalyst surface taking into account. By comparing the two experimental and calculated values, it was seen that error of kinetic model in predicting the experimental methanol conversion was lower (7.97%) than other responses. An almost completed methanol conversion was attained above 800 °C at all values of CO2/H2O ratios except for (CO2 + H2O)/CH3OH ratio of 0.5. The temperature had a positive impact on the H2 and CO yields, however; the dependency of CO yield to temperature was higher than H2 yield. CO2 conversion slightly decreased from 400 °C to 500 °C, while started to increase at temperatures above 500 °C regardless of (CO2+H2O)/CH3OH and CO2/H2O ratios. H2/CO ratio near to 2 which is suitable for Fischer–Tropsch synthesis (FTS) reaction was obtained at (CO2+H2O)/CH3OH ratios bigger than 1.5, a CO2/H2O ratio of 1 and temperature above 800 °C. The methanol conversion values obtained from thermodynamic equilibrium were equal with the experimental data. The reverse water-gas shift reaction quickly happened at temperatures above 700 °C, higher values of CO2/H2O ratio and under excess oxidizing agent, which led to increasing the gap between the experimental data and measured from thermodynamic equilibrium analysis.

Suggested Citation

  • Mosayebi, Amir & Eghbal Ahmadi, Mohammad Hosein, 2022. "Combined steam and dry reforming of methanol process to syngas formation: Kinetic modeling and thermodynamic equilibrium analysis," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021405
    DOI: 10.1016/j.energy.2022.125254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125254?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
    2. Ribeirinha, P. & Alves, I. & Vázquez, F. Vidal & Schuller, G. & Boaventura, M. & Mendes, A., 2017. "Heat integration of methanol steam reformer with a high-temperature polymeric electrolyte membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 468-477.
    3. Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Roh, Hyun-Seog & Son, In Hyuk & Lee, Seung Jae, 2016. "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application," Applied Energy, Elsevier, vol. 173(C), pages 80-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ybray, Sultan & Dikhanbaev, Arystan & Dikhanbaev, Bayandy & Mergalimova, Almagul & Georgiev, Aleksandar, 2023. "Development of a technology for the production of hydrogen-enriched synthesis gas with waste-free processing of Ekibastuz coal," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    2. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    3. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    4. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    5. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    6. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    7. Danbee Han & Yunji Kim & Wonjun Cho & Youngsoon Baek, 2020. "Effect of Oxidants on Syngas Synthesis from Biogas over 3 wt % Ni-Ce-MgO-ZrO 2 /Al 2 O 3 Catalyst," Energies, MDPI, vol. 13(2), pages 1-14, January.
    8. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    9. Perng, Shiang-Wuu & Chien, Tsai-Chieh & Horng, Rong-Fang & Wu, Horng-Wen, 2019. "Performance enhancement of a plate methanol steam reformer by ribs installed in the reformer channel," Energy, Elsevier, vol. 167(C), pages 588-601.
    10. Ouyang, Tiancheng & Xu, Jisong & Qin, Peijia & Cheng, Liang, 2022. "Utilizing flue gas low-grade waste heat and furnace excess heat to produce syngas and sulfuric acid recovery in coal-fired power plant," Energy, Elsevier, vol. 258(C).
    11. Barelli, L. & Bidini, G. & Cinti, G. & Gallorini, F. & Pöniz, M., 2017. "SOFC stack coupled with dry reforming," Applied Energy, Elsevier, vol. 192(C), pages 498-507.
    12. Ribeirinha, P. & Abdollahzadeh, M. & Pereira, A. & Relvas, F. & Boaventura, M. & Mendes, A., 2018. "High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: Experimental and modelling," Applied Energy, Elsevier, vol. 215(C), pages 659-669.
    13. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.
    14. Evangelos Delikonstantis & Marco Scapinello & Georgios D. Stefanidis, 2017. "Investigating the Plasma-Assisted and Thermal Catalytic Dry Methane Reforming for Syngas Production: Process Design, Simulation and Evaluation," Energies, MDPI, vol. 10(9), pages 1-27, September.
    15. Zhang, Baoxu & Chen, Yumin & Zhang, Bing & Peng, Ruifeng & Lu, Qiancheng & Yan, Weijie & Yu, Bo & Liu, Fang & Zhang, Junying, 2022. "Cyclic performance of coke oven gas - Steam reforming with assistance of steel slag derivates for high purity hydrogen production," Renewable Energy, Elsevier, vol. 184(C), pages 592-603.
    16. Samuel Simon Araya & Vincenzo Liso & Xiaoti Cui & Na Li & Jimin Zhu & Simon Lennart Sahlin & Søren Højgaard Jensen & Mads Pagh Nielsen & Søren Knudsen Kær, 2020. "A Review of The Methanol Economy: The Fuel Cell Route," Energies, MDPI, vol. 13(3), pages 1-32, January.
    17. Li, Jie & Suvarna, Manu & Pan, Lanjia & Zhao, Yingru & Wang, Xiaonan, 2021. "A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification," Applied Energy, Elsevier, vol. 304(C).
    18. Parente, Marcelo & Soria, M.A. & Madeira, Luis M., 2020. "Hydrogen and/or syngas production through combined dry and steam reforming of biogas in a membrane reactor: A thermodynamic study," Renewable Energy, Elsevier, vol. 157(C), pages 1254-1264.
    19. Chang, Cheng-Ping & Wu, Yen-Chih & Chen, Wei-Yen & Pan, Chin & Su, Yu-Chuan & Huang, Yuh-Jeen & Tseng, Fan-Gang, 2020. "A hybrid phosphorus-acid fuel cell system incorporated with oxidative steam reforming of methanol (OSRM) reformer," Renewable Energy, Elsevier, vol. 153(C), pages 530-538.
    20. Cao, Pengfei & Adegbite, Stephen & Zhao, Haitao & Lester, Edward & Wu, Tao, 2018. "Tuning dry reforming of methane for F-T syntheses: A thermodynamic approach," Applied Energy, Elsevier, vol. 227(C), pages 190-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.