IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221015991.html
   My bibliography  Save this article

Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode

Author

Listed:
  • Shrivastav, Vishal
  • Sundriyal, Shashank
  • Tiwari, Umesh K.
  • Kim, Ki-Hyun
  • Deep, Akash

Abstract

The pyrolysis of metal-organic frameworks (MOFs) is an effective strategy for the synthesis of novel nanoporous structures for energy storage applications. In this work, the preparation of a zirconium oxide/carbon (ZrO2/C) nanocomposite via the pyrolysis of UiO-66 (a zirconium-based MOF) is reported for the first time. These MOF-derived metal oxide/carbon (ZrO2/C) materials have a great advantage in the case of supercapacitor applications over other MOFs or their derivatives as they do not need any external conductive agent. The ZrO2/C electrode exhibits an excellent electrochemical performance, delivering a specific capacitance of 241.5 F/g at 1 A/g current density. A 2 V symmetrical supercapacitor device is also prepared by employing a solid-state polymer gel electrolyte. The assembled device of ZrO2/C electrode has delivered a high energy density of around 29 Wh/kg (at a high power density of 1.5 kW/kg) while retaining almost 97% of the specific capacitance even after 2000 continuous charge/discharge cycles.

Suggested Citation

  • Shrivastav, Vishal & Sundriyal, Shashank & Tiwari, Umesh K. & Kim, Ki-Hyun & Deep, Akash, 2021. "Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221015991
    DOI: 10.1016/j.energy.2021.121351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221015991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ponce, M. Federico & Mamani, Arminda & Jerez, Florencia & Castilla, Josué & Ramos, Pamela B. & Acosta, Gerardo G. & Sardella, M. Fabiana & Bavio, Marcela A., 2022. "Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor," Energy, Elsevier, vol. 260(C).
    2. Sun, Bingkang & Zhang, Xiaoyun & Fan, Xing & Wang, Ruiyu & Bai, Hongcun & Wei, Xianyong, 2022. "Interface modification based on MnO2@N-doped activated carbon composites for flexible solid-state asymmetric supercapacitors," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221015991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.