IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipbs0360544221020156.html
   My bibliography  Save this article

Introducing oxygen vacancies for improving the electrochemical performance of Co9S8@NiCo-LDH nanotube arrays in flexible all-solid battery-capacitor hybrid supercapacitors

Author

Listed:
  • Liu, Mengjie
  • Wang, Lei
  • Yu, Xinyao
  • Zhang, Hao
  • Zhang, Hui
  • Li, Shikuo
  • Huang, Fangzhi

Abstract

In this work, rich oxygen vacancies are obtained in Co9S8@NiCo-LDH core-shell nanotube arrays (NTAs), which boost its electrochemical energy storage performance. The flexible carbon cloth (CC) supported Co9S8@NiCo-LDH NTAs are synthesized by situ growth and electrodeposition method. After reacting with NaBH4, the rich oxygen vacancies are generated in NiCo-LDH nanosheets to obtain Co9S8@oxygen vacancies-NiCo-LDH NTAs (Co9S8@OV-NiCo-LDH NTAs). These oxygen vacancies increase the charge transfer rate in the multi-level redox processes and make the electrochemical performance improve sharply. At a current density of 0.5 A g−1, the mass specific capacity of Co9S8@OV-NiCo-LDH NTAs is up to 1335 C g−1, which is more than four times higher than that of the untreated Co9S8@NiCo-LDH NTAs. In addition, with the prepared Co9S8@OV-NiCo-LDH core-shell NTAs as a positive electrode, along with the negative electrode of activated carbon (AC), a high-performance flexible all-solid battery-capacitor hybrid supercapacitors (HSC) device is assembled. The maximum energy density is up to 101.1 Wh kg−1 when the power density is 800 W kg−1.

Suggested Citation

  • Liu, Mengjie & Wang, Lei & Yu, Xinyao & Zhang, Hao & Zhang, Hui & Li, Shikuo & Huang, Fangzhi, 2022. "Introducing oxygen vacancies for improving the electrochemical performance of Co9S8@NiCo-LDH nanotube arrays in flexible all-solid battery-capacitor hybrid supercapacitors," Energy, Elsevier, vol. 238(PB).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020156
    DOI: 10.1016/j.energy.2021.121767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221020156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakthivel, Mani & Ramki, Settu & Chen, Shen-Ming & Ho, Kuo-Chuan, 2022. "Defect rich Se–CoWS2 as anode and banana flower skin-derived activated carbon channels with interconnected porous structure as cathode materials for asymmetric supercapacitor application," Energy, Elsevier, vol. 257(C).
    2. Ponce, M. Federico & Mamani, Arminda & Jerez, Florencia & Castilla, Josué & Ramos, Pamela B. & Acosta, Gerardo G. & Sardella, M. Fabiana & Bavio, Marcela A., 2022. "Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor," Energy, Elsevier, vol. 260(C).
    3. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.