IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222019296.html
   My bibliography  Save this article

Research on the evolution of pore and fracture structures during spontaneous combustion of coal based on CT 3D reconstruction

Author

Listed:
  • Sun, Lulu
  • Zhang, Chen
  • Wang, Gang
  • Huang, Qiming
  • Shi, Quanlin

Abstract

To study the evolution law of the pore and fracture structures during the spontaneous combustion of coal, a self-built high-temperature tube furnace was used in the experiment to heat the coal samples at different temperatures and gas atmospheres. The coal samples were scanned by Xray-CT technology, and the three-dimensional (3D) pore structure and equivalent pore network model of coal samples were extracted by CT 3D reconstruction technology. In the process of heating at 25–200 °C, the porosity and fractal dimension were more significantly developed for coal samples heat-treated in an air atmosphere than those for the coal samples heat-treated in nitrogen atmosphere. The connectivity and permeability of coal samples were investigated, and it was found that the connectivity of pore and fracture structures of coal samples heated in the air atmosphere was better. However, the coal samples heated after nitrogen injection had weak connectivity and permeability. At this temperature stage, the nitrogen injection into the goaf will have a stronger inhibitory ability to develop coal sample pore and fracture structures and a more obvious weakening of the permeability. Therefore, oxygen circulation inside the coal sample may be suppressed, which is more conducive to preventing and controlling coal spontaneous combustion.

Suggested Citation

  • Sun, Lulu & Zhang, Chen & Wang, Gang & Huang, Qiming & Shi, Quanlin, 2022. "Research on the evolution of pore and fracture structures during spontaneous combustion of coal based on CT 3D reconstruction," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019296
    DOI: 10.1016/j.energy.2022.125033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222019296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jingyu & Deng, Jun & Chen, Long & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation," Energy, Elsevier, vol. 181(C), pages 136-147.
    2. Dawid Szurgacz & Magdalena Tutak & Jarosław Brodny & Leszek Sobik & Olga Zhironkina, 2020. "The Method of Combating Coal Spontaneous Combustion Hazard in Goafs—A Case Study," Energies, MDPI, vol. 13(17), pages 1-22, September.
    3. Yang, Lei & Ai, Li & Xue, Kaihua & Ling, Zheng & Li, Yanghui, 2018. "Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation," Energy, Elsevier, vol. 163(C), pages 27-37.
    4. Shi, Quanlin & Qin, Botao & Hao, Yinghao & Li, Hongbiao, 2022. "Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    2. Wu, Mingqiu & Li, Haitao & Wang, Liang & Yang, Xinlei & Dai, Chongyang & Yang, Ning & Li, Jie & Wang, Yu & Yu, Minggao, 2023. "μCT quantitative assessment of the pore–fracture structures and permeability behaviors of long-flame coal treated by infrared rapid heating," Energy, Elsevier, vol. 274(C).
    3. Chen, Wei & Liu, Jie & Peng, Wenqing & Zhao, Yanlin & Luo, Shilin & Wan, Wen & Wu, Qiuhong & Wang, Yuanzeng & Li, Shengnan & Tang, Xiaoyu & Zeng, Xiantao & Wu, Xiaofan & Zhou, Yu & Xie, Senlin, 2023. "Aging deterioration of mechanical properties on coal-rock combinations considering hydro-chemical corrosion," Energy, Elsevier, vol. 282(C).
    4. Yang, Xinlei & Chu, Tingxiang & Yu, Minggao & Wang, Liang & Li, Haitao & Wen, Wushuang & Wu, Mingqiu & Wang, Fengchuan & Wang, Jiachen, 2024. "Effect of mechanical energy input during mechanical crushing on the macrokinetics of the coal–oxygen reaction: A laboratory–scale study," Energy, Elsevier, vol. 290(C).
    5. Liu, Qiqi & Liu, Chuang & Ma, Jiayu & Liu, Zhenyi & Sun, Lulu, 2024. "Comprehensive evaluation of low-temperature oxidation characteristics of low-rank bituminous coal and oil shale," Energy, Elsevier, vol. 294(C).
    6. Zang, Jie & Liu, Jialong & He, Jiabei & Zhang, Xiapeng, 2023. "Characterization of the pore structure in Chinese anthracite coal using FIB-SEM tomography and deep learning-based segmentation," Energy, Elsevier, vol. 282(C).
    7. Guo, Xiaoyang & Liu, Yijia & Zhang, Lemei & Deng, Cunbao & Song, Liuni & Zhang, Yu, 2024. "Regulatory mechanism of microscopic pore structure on anisotropy of gas multimodal seepage in original coals," Energy, Elsevier, vol. 300(C).
    8. Yan, Fazhi & Zeng, Tao & Yang, Mengmeng & Peng, Shoujian & Gao, Changjiong & Yang, Yongdan, 2024. "Study on pore-crack evolution and connectivity of coal subjected to controlled electrical pulse based on CT scanning technology," Energy, Elsevier, vol. 296(C).
    9. Chen, Jian & Lu, Yi & Tang, Guoxin & Yang, Yuxuan & Shao, Shuzhen & Ding, Yangwei, 2023. "Research and prevention of upper remaining coal spontaneous combustion induced by air leakage in multi-inclination regenerated roof: A case study in the Luwa coal mine, China," Energy, Elsevier, vol. 275(C).
    10. Bin Du & Yuntao Liang & Fuchao Tian & Baolong Guo, 2023. "Analytical Prediction of Coal Spontaneous Combustion Tendency: Pore Structure and Air Permeability," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    11. Liu, Haizhou & Mao, Lingtao & Ju, Yang & Hild, François, 2023. "Damage evolution in coal under different loading modes using advanced digital volume correlation based on X-ray computed tomography," Energy, Elsevier, vol. 275(C).
    12. Cheng, Ming & Fu, Xuehai & Chen, Zhaoying & Liu, Ting & Zhang, Miao & Kang, Junqiang, 2023. "A new approach to evaluate abandoned mine methane resources based on the zoning of the mining-disturbed strata," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxuan Zhou & Shugang Li & Yang Bai & Hang Long & Yuchu Cai & Jingfei Zhang, 2023. "Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    2. Fu, Shenguang & Wang, Liang & Li, Shuohao & Ni, Sijia & Cheng, Yuanping & Zhang, Xiaolei & Liu, Shimin, 2024. "Re-thinking methane storage mechanism in highly metamorphic coalbed reservoirs — A molecular simulation considering organic components," Energy, Elsevier, vol. 293(C).
    3. Sergey Zhironkin & Michal Cehlár, 2021. "Coal Mining Sustainable Development: Economics and Technological Outlook," Energies, MDPI, vol. 14(16), pages 1-8, August.
    4. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    5. Xi, Xian & Tao, Yifan & Jiang, Shuguang & Yin, Chenchen, 2023. "Study on the formation mechanism and mechanical properties of composite foam slurry material for mine plugging," Energy, Elsevier, vol. 281(C).
    6. Xu, Yizhen & Qin, Botao & Shi, Quanlin & Hao, Mingyue & Shao, Xu & Jiang, Zhe & Ma, Zujie, 2023. "Study on the preparation and properties of colloidal gas foam concrete to prevent spontaneous combustion of coal," Energy, Elsevier, vol. 283(C).
    7. Lu, Wei & Gao, Ao & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong, 2023. "Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 282(C).
    8. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    9. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    10. Lu, Wei & Gao, Ao & Sun, Weili & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong & Cao, Yingjiazi, 2022. "Experimental study on inhibition of spontaneous combustion of different-rank coals by high-performance m-Cresol water-based inhibitor solutions," Energy, Elsevier, vol. 261(PA).
    11. Xi, Xian & Jiang, Shuguang & Shi, Quanlin, 2023. "Study on the flow and bonding-reinforcement characteristics of composite foam slurry material used to block mine leakage," Energy, Elsevier, vol. 263(PD).
    12. Meng, Xianliang & Sun, Jiali & Chu, Ruizhi & Fan, Lulu & Jiang, Xiaofeng & Tang, Ludeng & Zheng, Donglin, 2023. "Effect of active functional groups in coal on the release behavior of small molecule gases during low-temperature oxidation," Energy, Elsevier, vol. 273(C).
    13. Zhai, Xiaowei & Ge, Hui & Wang, Tingyan & Shu, Chi-Min & Li, Jun, 2020. "Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal," Energy, Elsevier, vol. 205(C).
    14. Zhou, Yan & Guan, Wei & Cong, Peichao & Sun, Qiji, 2022. "Effects of heterogeneous pore closure on the permeability of coal involving adsorption-induced swelling: A micro pore-scale simulation," Energy, Elsevier, vol. 258(C).
    15. Song, Rui & Liu, Jianjun & Yang, Chunhe & Sun, Shuyu, 2022. "Study on the multiphase heat and mass transfer mechanism in the dissociation of methane hydrate in reconstructed real-shape porous sediments," Energy, Elsevier, vol. 254(PC).
    16. Wei, Rupeng & Xia, Yongqiang & Wang, Zifei & Li, Qingping & Lv, Xin & Leng, Shudong & Zhang, Lunxiang & Zhang, Yi & Xiao, Bo & Yang, Shengxiong & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2022. "Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea," Applied Energy, Elsevier, vol. 320(C).
    17. Li, Yanghui & Wei, Zhaosheng & Wang, Haijun & Wu, Peng & Zhang, Shuheng & You, Zeshao & Liu, Tao & Huang, Lei & Song, Yongchen, 2024. "Impact of hydrate spatial heterogeneity on gas permeability in hydrate-bearing sediments," Energy, Elsevier, vol. 293(C).
    18. Liu, Wei & Zhang, Fengjie & Gao, Tiegang & Chu, Xiangyu & Qin, Yueping, 2023. "Efficient prevention of coal spontaneous combustion using cooling nitrogen injection in a longwall gob: An application case," Energy, Elsevier, vol. 281(C).
    19. Pan, Rongkun & Li, Cong & Chao, Jiangkun & Hu, Daimin & Jia, Hailin, 2023. "Thermal properties and microstructural evolution of coal spontaneous combustion," Energy, Elsevier, vol. 262(PA).
    20. Wang, Kai & Huang, Hao & Deng, Jun & Zhang, Yanni & Wang, Qun, 2024. "A spatio-temporal temperature prediction model for coal spontaneous combustion based on back propagation neural network," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.