IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223023095.html
   My bibliography  Save this article

Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion

Author

Listed:
  • Lu, Wei
  • Gao, Ao
  • Liang, Yuntao
  • He, Zhenglong
  • Li, Jinliang
  • Sun, Yong
  • Song, Shuanglin
  • Meng, Shaocong

Abstract

A stable and highly efficient 1, 1, 3, 3, 3-hexamethyldisilazane (HMDS) terminated m-Cresol inhibitor was synthesized based on the protection-deprotection strategy. The inhibitory effect of HMDS terminated m-Cresol inhibitor on spontaneous combustion of lignite was explored through temperature-programmed oxidation tests, in-situ infrared analysis and thermogravimetric analysis. Results show that, the oxidation of active phenolic hydroxyl groups in the m-Cresol inhibitor can be hindered by the protection of HMDS. After encountering coal, the HMDS terminated inhibitor can be gradually deprotected to regenerate the m-Cresol inhibitor that contains massive active phenolic hydroxyl groups, thus improving the chemical inhibition efficiency of coal spontaneous combustion. For the coal sample inhibited with HMDS terminated m-Cresol inhibitor, the initial contents of the active functional groups are lower and more stable during heating, and the inhibition rate reaches 70% at 130 °C. Moreover, the crossing-point temperature rises by 32.4 °C–181.2 °C. The activation energy increases by 11 kJ/mol and 18 kJ/mol at below and above 130 °C respectively. The peak temperature at maximum weight loss rate rises by 65 °C–431.2 °C, and the corresponding residual carbon rate increased by 31.3%–61.6%. The inhibition mechanism of the HMDS terminated m-Cresol inhibitor on coal spontaneous combustion was deduced.

Suggested Citation

  • Lu, Wei & Gao, Ao & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong, 2023. "Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023095
    DOI: 10.1016/j.energy.2023.128915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xiaoxue & Yuan, Shujie & Li, Jinhu & Guo, Shengli & Yan, Zhuo, 2023. "Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    2. Lu, Wei & Gao, Ao & Sun, Weili & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong & Cao, Yingjiazi, 2022. "Experimental study on inhibition of spontaneous combustion of different-rank coals by high-performance m-Cresol water-based inhibitor solutions," Energy, Elsevier, vol. 261(PA).
    3. Lü, Hui-Fei & Xiao, Yang & Deng, Jun & Li, Da-jiang & Yin, Lan & Shu, Chi-Min, 2019. "Inhibiting effects of 1-butyl-3-methyl imidazole tetrafluoroborate on coal spontaneous combustion under different oxygen concentrations," Energy, Elsevier, vol. 186(C).
    4. Lv, Hongpeng & Li, Bei & Deng, Jun & Ye, Lili & Gao, Wei & Shu, Chi-Min & Bi, Mingshu, 2021. "A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion," Energy, Elsevier, vol. 231(C).
    5. Shi, Quanlin & Qin, Botao & Hao, Yinghao & Li, Hongbiao, 2022. "Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire," Energy, Elsevier, vol. 247(C).
    6. Guo, Shengli & Yan, Zhuo & Yuan, Shujie & Weile Geng,, 2021. "Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion," Energy, Elsevier, vol. 229(C).
    7. Shu, Pan & Zhang, Yanni & Deng, Jun & Duan, Zhengxiao & Zhai, Fangyan, 2023. "Characteristics and mechanism of modified hydrotalcite for coal spontaneous combustion preventing," Energy, Elsevier, vol. 265(C).
    8. Hou, Ya-nan & Nie, Bai-sheng & Zhang, Zhe-hao & Kong, Fan-bei & Zhao, Dan & Wang, Xiao-tong & Wang, Cai-ping, 2022. "Inhibitory effect of green antioxidants acting on surface groups and structure on lignite," Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Zhian & Yu, Rongxia & Ding, Hao & Wang, Hongsheng & Quan, Sainan & Song, Donghong & Lei, Yukun & Gao, Yukun & Zhang, Yinghua & Wang, Pengfei, 2023. "Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
    2. Xu, Xiaoxue & Yuan, Shujie & Li, Jinhu & Guo, Shengli & Yan, Zhuo, 2023. "Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    3. Lu, Wei & Gao, Ao & Sun, Weili & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong & Cao, Yingjiazi, 2022. "Experimental study on inhibition of spontaneous combustion of different-rank coals by high-performance m-Cresol water-based inhibitor solutions," Energy, Elsevier, vol. 261(PA).
    4. Yutao, Zhang & Yuanbo, Zhang & Yaqing, Li & Xueqiang, Shi & Yujie, Zhang, 2021. "Heat effects and kinetics of coal spontaneous combustion at various oxygen contents," Energy, Elsevier, vol. 234(C).
    5. Fan, Xin-li & Ma, Li & Sheng, You-jie & Liu, Xi-xi & Wei, Gao-ming & Liu, Shang-ming, 2023. "Experimental investigation on the characteristics of XG/GG/HPAM gel foam and prevention of coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
    6. Sun, Lulu & Zhan, Mingyu & Zhang, Chen & Shi, Quanlin & Huang, Qiming & Wang, Wenjie, 2022. "Experimental study on prevention of spontaneous combustion of coal by ionic surfactant solution injection in coal seam," Energy, Elsevier, vol. 260(C).
    7. Hou, Ya-nan & Nie, Bai-sheng & Zhang, Zhe-hao & Kong, Fan-bei & Zhao, Dan & Wang, Xiao-tong & Wang, Cai-ping, 2022. "Inhibitory effect of green antioxidants acting on surface groups and structure on lignite," Energy, Elsevier, vol. 257(C).
    8. Xue, Di & Hu, Xiangming & Cheng, Weimin & Yu, Xiaoxiao & Wu, Mingyue & Zhao, Yanyun & Lu, Yi & Pan, Rongkun & Niu, Huiyong & Hu, Shengyong, 2020. "Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate," Energy, Elsevier, vol. 213(C).
    9. Wang, Gang & Xie, Shuliang & Huang, Qiming & Wang, Enmao & Wang, Shuxin, 2023. "Study on the performances of fluorescent tracers for the wetting area detection of coal seam water injection," Energy, Elsevier, vol. 263(PE).
    10. Liu, Wei & Chu, Xiangyu & Xu, Hao & Chen, Wei & Ma, Liwei & Qin, Yueping & Wei, Jun, 2022. "Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation," Energy, Elsevier, vol. 247(C).
    11. Huang, Jiliang & Tan, Bo & Gao, Liyang & Shao, Zhuangzhuang & Wang, Haiyan & Chen, Zhen, 2023. "A multi-channel reaction model study of key primary and secondary active groups in the low-temperature oxidation process of coal," Energy, Elsevier, vol. 283(C).
    12. He, Yongjun & Deng, Jun & Yi, Xin & Xiao, Yang & Deng, Yin & Chen, Weile, 2023. "Effect of rare-earth-containing inhibitors on the low-temperature oxidation characteristics and thermodynamic properties of coal," Energy, Elsevier, vol. 281(C).
    13. Xi, Xian & Tao, Yifan & Jiang, Shuguang & Yin, Chenchen, 2023. "Study on the formation mechanism and mechanical properties of composite foam slurry material for mine plugging," Energy, Elsevier, vol. 281(C).
    14. Zhang, Xun & Zou, Jiahui & Lu, Bing & Huang, Ge & Yu, Chen & Liang, Huimin, 2023. "Experimental study on effect of mudstone on spontaneous combustion of coal," Energy, Elsevier, vol. 285(C).
    15. Xu, Yizhen & Qin, Botao & Shi, Quanlin & Hao, Mingyue & Shao, Xu & Jiang, Zhe & Ma, Zujie, 2023. "Study on the preparation and properties of colloidal gas foam concrete to prevent spontaneous combustion of coal," Energy, Elsevier, vol. 283(C).
    16. Chen, Jian & Lu, Yi & Tang, Guoxin & Yang, Yuxuan & Shao, Shuzhen & Ding, Yangwei, 2023. "Research and prevention of upper remaining coal spontaneous combustion induced by air leakage in multi-inclination regenerated roof: A case study in the Luwa coal mine, China," Energy, Elsevier, vol. 275(C).
    17. Zhao, Xingguo & Dai, Guanglong & Qin, Ruxiang & Zhou, Liang & Li, Jinhu & Li, Jinliang, 2024. "Spontaneous combustion characteristics of coal based on the oxygen consumption rate integral," Energy, Elsevier, vol. 288(C).
    18. Wang, Kai & Li, Kangnan & Du, Feng & Zhang, Xiang & Wang, Yanhai & Sun, Jiazhi, 2024. "Research on prediction model of coal spontaneous combustion temperature based on SSA-CNN," Energy, Elsevier, vol. 290(C).
    19. Bu, Yun-chuan & Niu, Hui-yong & Wang, Tao & Yang, Yan-xiao & Qiu, Tian, 2024. "Combustion characteristics of the thermal-mechanical coupling of broken coal in multiple atmospheres and the re-ignition laws of residual coal," Energy, Elsevier, vol. 299(C).
    20. Xi, Xian & Jiang, Shuguang & Shi, Quanlin, 2023. "Study on the flow and bonding-reinforcement characteristics of composite foam slurry material used to block mine leakage," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.