IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics0360544223008411.html
   My bibliography  Save this article

Damage evolution in coal under different loading modes using advanced digital volume correlation based on X-ray computed tomography

Author

Listed:
  • Liu, Haizhou
  • Mao, Lingtao
  • Ju, Yang
  • Hild, François

Abstract

To investigate the damage development of coal under different loading conditions, in-situ tests in uniaxial and triaxial compression were carried out. Advanced digital volume correlation based on finite element discretization was utilized to quantify the three-dimensional initial and newborn fractures. With this technique, the low contrast in the coal images was compensated for by mechanical regularization, and the fracture activities were quantified via a damage variable and mesh refinement scheme, including fracture opening/closure displacements, volume fractions of damaged elements, and fractal dimensions. The experiments revealed that the damage growth in coal was substantially affected by randomly distributed initial defects. Prior to a macroscopic failure, the coal samples generally experienced pre-existing fracture closure, newborn fracture initiation, interaction and propagation of the two fracture types. This study aimed to gain in-depth insights into the bulk fracture of coal and provide quantitative evidence for further understanding the damage mechanisms from the microscale to the macroscale.

Suggested Citation

  • Liu, Haizhou & Mao, Lingtao & Ju, Yang & Hild, François, 2023. "Damage evolution in coal under different loading modes using advanced digital volume correlation based on X-ray computed tomography," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008411
    DOI: 10.1016/j.energy.2023.127447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Lulu & Zhang, Chen & Wang, Gang & Huang, Qiming & Shi, Quanlin, 2022. "Research on the evolution of pore and fracture structures during spontaneous combustion of coal based on CT 3D reconstruction," Energy, Elsevier, vol. 260(C).
    2. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Kefei & Yang, Xiaolin & Xu, Liang & Thé, Jesse & Tan, Zhongchao & Yu, Hesheng, 2024. "Enhancing coal-gangue object detection using GAN-based data augmentation strategy with dual attention mechanism," Energy, Elsevier, vol. 287(C).
    2. Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    2. Liu, Qiqi & Liu, Chuang & Ma, Jiayu & Liu, Zhenyi & Sun, Lulu, 2024. "Comprehensive evaluation of low-temperature oxidation characteristics of low-rank bituminous coal and oil shale," Energy, Elsevier, vol. 294(C).
    3. Cheng, Ming & Fu, Xuehai & Chen, Zhaoying & Liu, Ting & Zhang, Miao & Kang, Junqiang, 2023. "A new approach to evaluate abandoned mine methane resources based on the zoning of the mining-disturbed strata," Energy, Elsevier, vol. 274(C).
    4. Yan, Fazhi & Zeng, Tao & Yang, Mengmeng & Peng, Shoujian & Gao, Changjiong & Yang, Yongdan, 2024. "Study on pore-crack evolution and connectivity of coal subjected to controlled electrical pulse based on CT scanning technology," Energy, Elsevier, vol. 296(C).
    5. Chen, Wei & Liu, Jie & Peng, Wenqing & Zhao, Yanlin & Luo, Shilin & Wan, Wen & Wu, Qiuhong & Wang, Yuanzeng & Li, Shengnan & Tang, Xiaoyu & Zeng, Xiantao & Wu, Xiaofan & Zhou, Yu & Xie, Senlin, 2023. "Aging deterioration of mechanical properties on coal-rock combinations considering hydro-chemical corrosion," Energy, Elsevier, vol. 282(C).
    6. Yang, Xinlei & Chu, Tingxiang & Yu, Minggao & Wang, Liang & Li, Haitao & Wen, Wushuang & Wu, Mingqiu & Wang, Fengchuan & Wang, Jiachen, 2024. "Effect of mechanical energy input during mechanical crushing on the macrokinetics of the coal–oxygen reaction: A laboratory–scale study," Energy, Elsevier, vol. 290(C).
    7. Chen, Jian & Lu, Yi & Tang, Guoxin & Yang, Yuxuan & Shao, Shuzhen & Ding, Yangwei, 2023. "Research and prevention of upper remaining coal spontaneous combustion induced by air leakage in multi-inclination regenerated roof: A case study in the Luwa coal mine, China," Energy, Elsevier, vol. 275(C).
    8. Guo, Xiaoyang & Liu, Yijia & Zhang, Lemei & Deng, Cunbao & Song, Liuni & Zhang, Yu, 2024. "Regulatory mechanism of microscopic pore structure on anisotropy of gas multimodal seepage in original coals," Energy, Elsevier, vol. 300(C).
    9. Bin Du & Yuntao Liang & Fuchao Tian & Baolong Guo, 2023. "Analytical Prediction of Coal Spontaneous Combustion Tendency: Pore Structure and Air Permeability," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    10. Cai, Jiawen & Yu, Zhaoyang & Yang, Shengqiang & Tang, Jingxia & Ma, Zhenqian & Xie, Xionggang & Hu, Xincheng, 2023. "Fractal characteristics of coal surface structure during low-temperature oxidation and its effect on oxidizability," Energy, Elsevier, vol. 284(C).
    11. Zang, Jie & Liu, Jialong & He, Jiabei & Zhang, Xiapeng, 2023. "Characterization of the pore structure in Chinese anthracite coal using FIB-SEM tomography and deep learning-based segmentation," Energy, Elsevier, vol. 282(C).
    12. Wu, Mingqiu & Li, Haitao & Wang, Liang & Yang, Xinlei & Dai, Chongyang & Yang, Ning & Li, Jie & Wang, Yu & Yu, Minggao, 2023. "μCT quantitative assessment of the pore–fracture structures and permeability behaviors of long-flame coal treated by infrared rapid heating," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.