IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001098.html
   My bibliography  Save this article

Investigation on activated carbon-sodium polyacrylate coated aluminum sheets for desiccant coated heat exchanger

Author

Listed:
  • Chen, K.
  • Zheng, X.
  • Wang, S.N.

Abstract

Adsorption and desorption properties of desiccants are of key significances to the dehumidification performance of a compact dehumidification component named desiccant coated heat exchanger. This work developed novel activated carbon (AC) - sodium polyacrylate (PAAS) composite coated aluminum sheets with high adsorption property and good desorption ability. Adsorption and desorption properties of AC-PAAS coated aluminum sheets were investigated under different air conditions. Cyclic adsorption-desorption features with internal-cooling/heating were conducted. Results showed that composite coated aluminum sheets had nearly 2∼3 times higher water uptake than an AC coated sample in the range of medium- to high-relative humidity (60%∼90% RH). More than 95% of adsorbed water in composite samples was released at 70 °C & 20% RH, and 86% was still desorbed when the air temperature was decreased to 40 °C. Adsorption capacities and rate coefficients of composite samples with internal-cooling could be 2.3 and 1.5 times higher than those without. This paper provides a way to develop composite desiccants with high cyclic water uptake performance in the fields of adsorption cooling, solid desiccant air-conditioning and atmospheric water harvesting.

Suggested Citation

  • Chen, K. & Zheng, X. & Wang, S.N., 2022. "Investigation on activated carbon-sodium polyacrylate coated aluminum sheets for desiccant coated heat exchanger," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001098
    DOI: 10.1016/j.energy.2022.123206
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, T.S. & Zhang, J.Y. & Dai, Y.J. & Wang, R.Z., 2017. "Experimental study on performance of silica gel and potassium formate composite desiccant coated heat exchanger," Energy, Elsevier, vol. 141(C), pages 149-158.
    2. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    3. Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
    4. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Peng, Z.Z., 2010. "Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers," Energy, Elsevier, vol. 35(7), pages 2893-2900.
    5. Vivekh, P. & Bui, D.T. & Wong, Y. & Kumja, M. & Chua, K.J., 2019. "Performance evaluation of PVA-LiCl coated heat exchangers for next-generation of energy-efficient dehumidification," Applied Energy, Elsevier, vol. 237(C), pages 733-750.
    6. Vivekh, P. & Islam, M.R. & Chua, K.J., 2020. "Experimental performance evaluation of a composite superabsorbent polymer coated heat exchanger based air dehumidification system," Applied Energy, Elsevier, vol. 260(C).
    7. Ahn, Jae Hwan & Lee, Joo Seong & Baek, Changhyun & Kim, Yongchan, 2016. "Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy," Energy, Elsevier, vol. 115(P1), pages 67-75.
    8. Ramzy K., A. & Kadoli, R. & Ashok Babu, T.P., 2011. "Improved utilization of desiccant material in packed bed dehumidifier using composite particles," Renewable Energy, Elsevier, vol. 36(2), pages 732-742.
    9. Valarezo, Andres S. & Sun, X.Y. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Experimental investigation on performance of a novel composite desiccant coated heat exchanger in summer and winter seasons," Energy, Elsevier, vol. 166(C), pages 506-518.
    10. Vivekh, P. & Bui, D.T. & Islam, M.R. & Zaw, K. & Chua, K.J., 2020. "Experimental performance and energy efficiency investigation of composite superabsorbent polymer and potassium formate coated heat exchangers," Applied Energy, Elsevier, vol. 275(C).
    11. Sun, X.Y. & Dai, Y.J. & Ge, T.S. & Zhao, Y. & Wang, R.Z., 2017. "Comparison of performance characteristics of desiccant coated air-water heat exchanger with conventional air-water heat exchanger – Experimental and analytical investigation," Energy, Elsevier, vol. 137(C), pages 399-411.
    12. Ge, T.S. & Dai, Y.J. & Li, Y. & Wang, R.Z., 2012. "Simulation investigation on solar powered desiccant coated heat exchanger cooling system," Applied Energy, Elsevier, vol. 93(C), pages 532-540.
    13. Zheng, X. & Wang, R.Z. & Ge, T.S. & Hu, L.M., 2015. "Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems," Energy, Elsevier, vol. 93(P1), pages 88-94.
    14. Xu, F. & Bian, Z.F. & Ge, T.S. & Dai, Y.J. & Wang, C.H. & Kawi, S., 2019. "Analysis on solar energy powered cooling system based on desiccant coated heat exchanger using metal-organic framework," Energy, Elsevier, vol. 177(C), pages 211-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Z. & Wang, Z.G. & Poredoš, P. & Ge, T.S. & Wang, R.Z., 2023. "Highly efficient desiccant-coated heat exchanger-based heat pump to decarbonize rail transportation," Energy, Elsevier, vol. 271(C).
    2. Zhang, Yu & Wang, Weining & Zheng, Xu & Cai, Jinliang, 2024. "Recent progress on composite desiccants for adsorption-based dehumidification," Energy, Elsevier, vol. 302(C).
    3. Liang, Jyun-De & Tsai, Lu-Kuan & Chai, Shaowei & Zhao, Yao & Chiang, Yuan-Ching & Dai, Yanjun & Chen, Sih-Li, 2023. "Experimental investigation and analysis of alumina/polymer/alginate composite desiccant materials," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    3. Vivekh, P. & Kumja, M. & Bui, D.T. & Chua, K.J., 2018. "Recent developments in solid desiccant coated heat exchangers – A review," Applied Energy, Elsevier, vol. 229(C), pages 778-803.
    4. Wang, Cong & Yang, Bianfeng & Ji, Xu & Zhang, Ren & Wu, Hailong, 2022. "Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification," Energy, Elsevier, vol. 251(C).
    5. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    6. Vivekh, P. & Bui, D.T. & Islam, M.R. & Zaw, K. & Chua, K.J., 2020. "Experimental performance and energy efficiency investigation of composite superabsorbent polymer and potassium formate coated heat exchangers," Applied Energy, Elsevier, vol. 275(C).
    7. Zhang, Yu & Wang, Weining & Zheng, Xu & Cai, Jinliang, 2024. "Recent progress on composite desiccants for adsorption-based dehumidification," Energy, Elsevier, vol. 302(C).
    8. Liu, M. & Prabakaran, V. & Bui, T. & Cheng, G.G. & Pang, W., 2023. "Three-dimensional numerical analysis of fin-tube desiccant-coated heat exchanger for air dehumidification in tropics," Applied Energy, Elsevier, vol. 331(C).
    9. Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).
    10. Vivekh, P. & Islam, M.R. & Chua, K.J., 2020. "Experimental performance evaluation of a composite superabsorbent polymer coated heat exchanger based air dehumidification system," Applied Energy, Elsevier, vol. 260(C).
    11. Ge, Lurong & Ge, Tianshu & Wang, Ruzhu, 2022. "Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Valarezo, Andres S. & Sun, X.Y. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Experimental investigation on performance of a novel composite desiccant coated heat exchanger in summer and winter seasons," Energy, Elsevier, vol. 166(C), pages 506-518.
    13. Zheng, Xu & Zhang, Yu & Wan, Tinghao & Chen, Kang, 2023. "Experimental study on the performance of a novel superabsorbent polymer and activated carbon composite coated heat exchangers," Energy, Elsevier, vol. 281(C).
    14. Chen, W.D. & Vivekh, P. & Liu, M.Z. & Kumja, M. & Chua, K.J., 2021. "Energy improvement and performance prediction of desiccant coated dehumidifiers based on dimensional and scaling analysis," Applied Energy, Elsevier, vol. 303(C).
    15. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Ge, Lurong & Feng, Yaohui & Wu, Jiarong & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of MIL-101(Cr) based desiccant-coated heat exchangers for efficient dehumidification," Energy, Elsevier, vol. 289(C).
    17. Liu, M.Z. & Chen, W.D. & Shao, Y.L. & Huang, Z.F. & Zeng, Z.Y. & Wan, Y.D. & Chua, K.J., 2024. "Experimental analysis and investigation of desiccant coated heat exchanger applications involving condensation and sorption mechanisms," Energy, Elsevier, vol. 305(C).
    18. Sun, X.Y. & Dai, Y.J. & Ge, T.S. & Zhao, Y. & Wang, R.Z., 2017. "Comparison of performance characteristics of desiccant coated air-water heat exchanger with conventional air-water heat exchanger – Experimental and analytical investigation," Energy, Elsevier, vol. 137(C), pages 399-411.
    19. Bui, Duc Thuan & Kum Ja, M. & Gordon, Jeffrey M. & Ng, Kim Choon & Chua, Kian Jon, 2017. "A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification," Energy, Elsevier, vol. 132(C), pages 106-115.
    20. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.