IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i7p2893-2900.html
   My bibliography  Save this article

Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers

Author

Listed:
  • Ge, T.S.
  • Dai, Y.J.
  • Wang, R.Z.
  • Peng, Z.Z.

Abstract

In this paper, two desiccant-coated heat exchangers, which are actually fin-tube heat exchanging devices coated with silica gel and polymer materials respectively, are investigated experimentally. Due to the hygroscopic properties of the desiccant materials, both the sensible heat and the latent heat of the process air can be handled by using this kind of heat exchanger. An experimental setup was designed and built to test the performance of this unit. It is found that this desiccant-coated fin-tube heat exchanger well overcomes the side effect of adsorption heat which occurs in desiccant dehumidification process, and achieves good dehumidification performance under given conditions. The silica gel coated heat exchanger behaves better than the polymer one. The influences of regeneration temperature, inlet air temperature and humidity on the system performance in terms of average moisture removal rate Davg and thermal coefficient of performance COPth were also analyzed.

Suggested Citation

  • Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Peng, Z.Z., 2010. "Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers," Energy, Elsevier, vol. 35(7), pages 2893-2900.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:7:p:2893-2900
    DOI: 10.1016/j.energy.2010.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
    2. Majumdar, P. & Sarwar, M.K., 1994. "Performance of a desiccant dehumidifier bed with mixed inert and desiccant materials," Energy, Elsevier, vol. 19(1), pages 103-116.
    3. Ali Mandegari, M. & Pahlavanzadeh, H., 2009. "Introduction of a new definition for effectiveness of desiccant wheels," Energy, Elsevier, vol. 34(6), pages 797-803.
    4. Nóbrega, C.E.L. & Brum, N.C.L., 2009. "Modeling and simulation of heat and enthalpy recovery wheels," Energy, Elsevier, vol. 34(12), pages 2063-2068.
    5. Stabat, Pascal & Marchio, Dominique, 2008. "Heat-and-mass transfers modelled for rotary desiccant dehumidifiers," Applied Energy, Elsevier, vol. 85(2-3), pages 128-142, February.
    6. San, Jung-Yang & Jan, Chin-Lon, 2000. "Second-law analysis of a wet crossflow heat exchanger," Energy, Elsevier, vol. 25(10), pages 939-955.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sphaier, L.A. & Nóbrega, C.E.L., 2012. "Parametric analysis of components effectiveness on desiccant cooling system performance," Energy, Elsevier, vol. 38(1), pages 157-166.
    2. Ruivo, Celestino R. & Goldsworthy, Mark & Intini, Manuel, 2014. "Interpolation methods to predict the influence of inlet airflow states on desiccant wheel performance at low regeneration temperature," Energy, Elsevier, vol. 68(C), pages 765-772.
    3. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    5. Zhou, Xingchao & Goldsworthy, Mark & Sproul, Alistair, 2018. "Performance investigation of an internally cooled desiccant wheel," Applied Energy, Elsevier, vol. 224(C), pages 382-397.
    6. Angrisani, Giovanni & Capozzoli, Alfonso & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2011. "Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances," Applied Energy, Elsevier, vol. 88(4), pages 1354-1365, April.
    7. Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2014. "Review on solar powered rotary desiccant wheel cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 476-497.
    8. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    9. Nóbrega, C.E.L. & Brum, N.C.L., 2011. "A graphical procedure for desiccant cooling cycle design," Energy, Elsevier, vol. 36(3), pages 1564-1570.
    10. Chanchira Channoy & Somchai Maneewan & Surapong Chirarattananon & Chantana Punlek, 2022. "Development and Characterization of Composite Desiccant Impregnated with LiCl for Thermoelectric Dehumidifier (TED)," Energies, MDPI, vol. 15(5), pages 1-17, February.
    11. De Antonellis, Stefano & Joppolo, Cesare Maria & Molinaroli, Luca & Pasini, Alberto, 2012. "Simulation and energy efficiency analysis of desiccant wheel systems for drying processes," Energy, Elsevier, vol. 37(1), pages 336-345.
    12. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2011. "Solid desiccant air-conditioning systems – Design parameters," Energy, Elsevier, vol. 36(5), pages 2399-2406.
    13. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.
    14. Zhang, Yinping & Jiang, Yi & Zhang, Li Zhi & Deng, Yuchun & Jin, Zhaofen, 2000. "Analysis of thermal performance and energy savings of membrane based heat recovery ventilator," Energy, Elsevier, vol. 25(6), pages 515-527.
    15. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2013. "Effect of rotational speed on the performances of a desiccant wheel," Applied Energy, Elsevier, vol. 104(C), pages 268-275.
    16. Heidar Sadeghzadeh & Mehdi Aliehyaei & Marc A. Rosen, 2015. "Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm," Sustainability, MDPI, vol. 7(9), pages 1-17, August.
    17. Santori, G. & Frazzica, A. & Freni, A. & Galieni, M. & Bonaccorsi, L. & Polonara, F. & Restuccia, G., 2013. "Optimization and testing on an adsorption dishwasher," Energy, Elsevier, vol. 50(C), pages 170-176.
    18. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    19. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    20. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:7:p:2893-2900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.