IDEAS home Printed from https://ideas.repec.org/a/bjb/journl/v12y2023i11p15-30.html
   My bibliography  Save this article

Data Centers and Green Energy: Paving the Way for a Sustainable Digital Future

Author

Listed:
  • Babasola Osibo

    (University of Dallas, Northgate Drive, Irving, United States of America.)

  • Simisola Adamo

    (University of Dallas, Northgate Drive, Irving, United States of America.)

Abstract

As Information and Communication Technologies (ICTs) reach unprecedented heights of global influence, the USA stands as a leader with 91.8% of its residents connected to the internet. The interconnection of sectors like healthcare, finance, social media, and governance through the internet results in an immense volume of data, stored and managed globally within Data Centers. The surge in Data Centers in the USA, driven by a 4.12% CAGR and expanding service providers, prompts a critical examination of their environmental impact. Currently, nearly 2% of the USA's total energy production is attributed to Data Centers, predominantly reliant on conventional energy sources. This research explores the potential transition of Data Centers to green energy sources, investigating the feasibility of taking them off the grid. By aligning internet user growth, Data Center functionalities, and the USA's renewable energy capacity, the study aims to unravel the environmental implications and sustainability challenges faced by the Data Center industry. Through an in-depth analysis of key point indicators for Data Center sustainability and leveraging various renewable resources, the research assesses the viability of supporting Data Centers with green energy in the USA. The findings delve into predictions for renewable energy production, offering insights into aligning energy consumption patterns with sustainable practices for a greener digital future.

Suggested Citation

  • Babasola Osibo & Simisola Adamo, 2023. "Data Centers and Green Energy: Paving the Way for a Sustainable Digital Future," International Journal of Latest Technology in Engineering, Management & Applied Science, International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), vol. 12(11), pages 15-30, November.
  • Handle: RePEc:bjb:journl:v:12:y:2023:i:11:p:15-30
    as

    Download full text from publisher

    File URL: https://www.ijltemas.in/DigitalLibrary/Vol.12Issue11/15-30.pdf
    Download Restriction: no

    File URL: https://www.ijltemas.in/papers/volume-12-issue-11/15-30.html
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koot, Martijn & Wijnhoven, Fons, 2021. "Usage impact on data center electricity needs: A system dynamic forecasting model," Applied Energy, Elsevier, vol. 291(C).
    2. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    3. Mohamed Sameer Hoosain & Babu Sena Paul & Susanna Kass & Seeram Ramakrishna, 2023. "Tools Towards the Sustainability and Circularity of Data Centers," Circular Economy and Sustainability, Springer, vol. 3(1), pages 173-197, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madlener, Reinhard & Sheykhha, Siamak & Briglauer, Wolfgang, 2022. "The electricity- and CO2-saving potentials offered by regulation of European video-streaming services," Energy Policy, Elsevier, vol. 161(C).
    2. Zhenxiang Cao & Liqing Peng, 2023. "The Impact of Digital Economics on Environmental Quality: A System Dynamics Approach," SAGE Open, , vol. 13(4), pages 21582440231, December.
    3. Steffen Dalsgaard, 2022. "Can IT Resolve the Climate Crisis? Sketching the Role of an Anthropology of Digital Technology," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    4. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    5. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    6. Wen Chen & Changyi Zhu & Qi Cheung & Siying Wu & Jun Zhang & Jia Cao, 2024. "How does digitization enable green innovation? Evidence from Chinese listed companies," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 3832-3854, July.
    7. Anders S. G. Andrae & Mengjun Xia & Jianli Zhang & Xiaoming Tang, 2016. "Practical Eco-Design and Eco-Innovation of Consumer Electronics—the Case of Mobile Phones," Challenges, MDPI, vol. 7(1), pages 1-19, February.
    8. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    9. Muhammad Fahad & Arsalan Shahid & Ravi Reddy Manumachu & Alexey Lastovetsky, 2019. "A Comparative Study of Methods for Measurement of Energy of Computing," Energies, MDPI, vol. 12(11), pages 1-42, June.
    10. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    11. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    12. Anders S. G. Andrae & Mikko Samuli Vaija, 2017. "Precision of a Streamlined Life Cycle Assessment Approach Used in Eco-Rating of Mobile Phones," Challenges, MDPI, vol. 8(2), pages 1-24, August.
    13. Salil Bharany & Sandeep Sharma & Osamah Ibrahim Khalaf & Ghaida Muttashar Abdulsahib & Abeer S. Al Humaimeedy & Theyazn H. H. Aldhyani & Mashael Maashi & Hasan Alkahtani, 2022. "A Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing," Sustainability, MDPI, vol. 14(10), pages 1-89, May.
    14. Elgaaied-Gambier, Leila & Bertrandias, Laurent & Bernard, Yohan, 2020. "Cutting the Internet's Environmental Footprint: An Analysis of Consumers' Self-Attribution of Responsibility," Journal of Interactive Marketing, Elsevier, vol. 50(C), pages 120-135.
    15. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    16. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    17. Cho, Jinkyun, 2024. "Optimal supply air temperature with respect to data center operational stability and energy efficiency in a row-based cooling system under fault conditions," Energy, Elsevier, vol. 288(C).
    18. Kosuke Sasakura & Takeshi Aoki & Masayoshi Komatsu & Takeshi Watanabe, 2020. "A Temperature-Risk and Energy-Saving Evaluation Model for Supporting Energy-Saving Measures for Data Center Server Rooms," Energies, MDPI, vol. 13(19), pages 1-22, October.
    19. Guo, Yuxiang & Qu, Shengli & Wang, Chuang & Xing, Ziwen & Duan, Kaiwen, 2024. "Optimal dynamic thermal management for data center via soft actor-critic algorithm with dynamic control interval and combined-value state space," Applied Energy, Elsevier, vol. 373(C).
    20. Daniel Walia & Paul Schünemann & Hauke Hartmann & Frank Adam & Jochen Großmann, 2021. "Numerical and Physical Modeling of a Tension-Leg Platform for Offshore Wind Turbines," Energies, MDPI, vol. 14(12), pages 1-22, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjb:journl:v:12:y:2023:i:11:p:15-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Pawan Verma (email available below). General contact details of provider: https://www.ijltemas.in/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.