IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v34y2014i1p121-134.html
   My bibliography  Save this article

Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures

Author

Listed:
  • Jaume Belles‐Sampera
  • Montserrat Guillén
  • Miguel Santolino

Abstract

We propose a new family of risk measures, called GlueVaR, within the class of distortion risk measures. Analytical closed‐form expressions are shown for the most frequently used distribution functions in financial and insurance applications. The relationship between GlueVaR, value‐at‐risk, and tail value‐at‐risk is explained. Tail subadditivity is investigated and it is shown that some GlueVaR risk measures satisfy this property. An interpretation in terms of risk attitudes is provided and a discussion is given on the applicability in nonfinancial problems such as health, safety, environmental, or catastrophic risk management.

Suggested Citation

  • Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
  • Handle: RePEc:wly:riskan:v:34:y:2014:i:1:p:121-134
    DOI: 10.1111/risa.12080
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12080
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    2. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    3. Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.
    4. Michel Grabisch & Jean-Luc Marichal & Radko Mesiar & Endre Pap, 2011. "Aggregation functions: Means," Post-Print hal-00539028, HAL.
    5. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    6. Degen, Matthias & Lambrigger, Dominik D. & Segers, Johan, 2010. "Risk concentration and diversification: Second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 541-546, June.
    7. repec:dau:papers:123456789/2278 is not listed on IDEAS
    8. Wang, Shaun & Dhaene, Jan, 1998. "Comonotonicity, correlation order and premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 235-242, July.
    9. Alfred Galichon & Ivar Ekeland & Marc Henry, 2009. "Comonotonic measures of multivariates risks," Working Papers hal-00401828, HAL.
    10. Alejandro Balbás & José Garrido & Silvia Mayoral, 2009. "Properties of Distortion Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 385-399, September.
    11. Hamid Mohtadi & Swati Agiwal, 2012. "Optimal Security Investments and Extreme Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1309-1325, August.
    12. Bolance, Catalina & Guillen, Montserrat & Pelican, Elena & Vernic, Raluca, 2008. "Skewed bivariate models and nonparametric estimation for the CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 386-393, December.
    13. Terje Aven, 2012. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1647-1656, October.
    14. Casper G. de Vries & Gennady Samorodnitsky & Bjørn N. Jorgensen & Sarma Mandira & Jon Danielsson, 2005. "Subadditivity Re–Examined: the Case for Value-at-Risk," FMG Discussion Papers dp549, Financial Markets Group.
    15. Andreas Tsanakas & Evangelia Desli, 2005. "Measurement and Pricing of Risk in Insurance Markets," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1653-1668, December.
    16. Louis Anthony (Tony) Cox, 2012. "Confronting Deep Uncertainties in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1607-1629, October.
    17. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    18. Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
    19. Pongsakdi, Arkadej & Rangsunvigit, Pramoch & Siemanond, Kitipat & Bagajewicz, Miguel J., 2006. "Financial risk management in the planning of refinery operations," International Journal of Production Economics, Elsevier, vol. 103(1), pages 64-86, September.
    20. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
    21. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b1h6b4 is not listed on IDEAS
    22. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    23. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    24. Degen, Matthias & Lambrigger, Dominik D. & Segers, Johan, 2010. "Risk concentration and diversification: Second-order properties," LIDAM Reprints ISBA 2010011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    25. Kjell Hausken, 2006. "Returns to information security investment: The effect of alternative information security breach functions on optimal investment and sensitivity to vulnerability," Information Systems Frontiers, Springer, vol. 8(5), pages 338-349, December.
    26. Guillen, Montserrat & Prieto, Faustino & Sarabia, José María, 2011. "Modelling losses and locating the tail with the Pareto Positive Stable distribution," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 454-461.
    27. Terje Aven, 2013. "On the Meaning and Use of the Risk Appetite Concept," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 462-468, March.
    28. Owen, Nick A. & Inderwildi, Oliver R. & King, David A., 2010. "The status of conventional world oil reserves--Hype or cause for concern?," Energy Policy, Elsevier, vol. 38(8), pages 4743-4749, August.
    29. Michel Grabisch & Jean-Luc Marichal & Radko Mesiar & Endre Pap, 2011. "Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes," Post-Print hal-00539032, HAL.
    30. Gary D. Eppen & R. Kipp Martin & Linus Schrage, 1989. "OR Practice—A Scenario Approach to Capacity Planning," Operations Research, INFORMS, vol. 37(4), pages 517-527, August.
    31. Chen, Die & Mao, Tiantian & Pan, Xiaoqing & Hu, Taizhong, 2012. "Extreme value behavior of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 99-108.
    32. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b1h6b4 is not listed on IDEAS
    33. Webby, R.B. & Adamson, P.T. & Boland, J. & Howlett, P.G. & Metcalfe, A.V. & Piantadosi, J., 2007. "The Mekong—applications of value at risk (VaR) and conditional value at risk (CVaR) simulation to the benefits, costs and consequences of water resources development in a large river basin," Ecological Modelling, Elsevier, vol. 201(1), pages 89-96.
    34. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    35. Song, Yongsheng & Yan, Jia-An, 2009. "Risk measures with comonotonic subadditivity or convexity and respecting stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 459-465, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cornilly, Dries & Vanduffel, Steven, 2019. "Equivalent distortion risk measures on moment spaces," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 187-192.
    2. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2021. "Optimal reinsurance with multiple reinsurers: Competitive pricing and coalition stability," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 302-319.
    3. Cornilly, D. & Rüschendorf, L. & Vanduffel, S., 2018. "Upper bounds for strictly concave distortion risk measures on moment spaces," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 141-151.
    4. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    5. Vanda Tulli & Mauro Gallegati & Gerd Weinrich, 2019. "Financial conditions and supply decisions when firms are risk averse," Journal of Economics, Springer, vol. 128(3), pages 259-289, December.
    6. Eric Benhamou & Beatrice Guez & Nicolas Paris1, 2019. "Omega and Sharpe ratio," Papers 1911.10254, arXiv.org.
    7. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    8. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    9. Krężołek Dominik, 2016. "The Gluevar Risk Measure and Investor’s Attitudes to Risk–An Application to the Non-Ferrous Metals Market," Statistics in Transition New Series, Statistics Poland, vol. 17(2), pages 305-316, June.
    10. Ghossoub, Mario & Jiang, Wenjun & Ren, Jiandong, 2022. "Pareto-optimal reinsurance under individual risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 307-325.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2013. "“Beyond Value-at-Risk: GlueVaR Distortion Risk Measures”," IREA Working Papers 201302, University of Barcelona, Research Institute of Applied Economics, revised Feb 2013.
    2. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2013. "“The use of flexible quantile-based measures in risk assessment”," IREA Working Papers 201323, University of Barcelona, Research Institute of Applied Economics, revised Dec 2013.
    3. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    4. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    5. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    6. Zang, Xin & Jiang, Fan & Xia, Chenxi & Yang, Jingping, 2024. "Random distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 51-73.
    7. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    8. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    9. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    10. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    11. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    12. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    13. Yanhong Chen & Yijun Hu, 2019. "Set-Valued Law Invariant Coherent And Convex Risk Measures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-18, May.
    14. Grigorova Miryana, 2014. "Stochastic dominance with respect to a capacity and risk measures," Statistics & Risk Modeling, De Gruyter, vol. 31(3-4), pages 259-295, December.
    15. Soren Bettels & Sojung Kim & Stefan Weber, 2022. "Multinomial Backtesting of Distortion Risk Measures," Papers 2201.06319, arXiv.org, revised Aug 2024.
    16. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    17. Belles-Sampera, Jaume & Guillén, Montserrat & Santolino, Miguel, 2014. "GlueVaR risk measures in capital allocation applications," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 132-137.
    18. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    19. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.
    20. Belles-Sampera, Jaume & Guillen, Montserrat & Santolino, Miguel, 2016. "What attitudes to risk underlie distortion risk measure choices?," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 101-109.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:34:y:2014:i:1:p:121-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.