IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v255y2022ics0360544222015201.html
   My bibliography  Save this article

Techno-economic comparison of optimized natural gas combined cycle power plants with CO2 capture

Author

Listed:
  • Kazemi, Abolghasem
  • Moreno, Jovita
  • Iribarren, Diego

Abstract

Natural gas combined cycle (NGCC) power plants account for a large share of the global energy market. Although many alternative layouts of NGCC plants have already been addressed in the scientific literature, there are still relevant gaps of knowledge in comparative techno-economic performances of the previously proposed alternatives. This article presents a comprehensive comparative study of 19 alternative NGCC power plants with pre-combustion, post-combustion or oxy-fuel combustion CO2 capture processes involving different choices of CO2 absorbents and organic Rankine cycles for energy savings. The purpose of this study is to shed light on comparative techno-economic performances of power plants with different CO2 capture strategies and various organic Rankine cycle configurations. First, performance of each alternative was optimized from a technical (equivalent work) standpoint. Then, the economic performance of each optimized alternative was evaluated. Based on the results within the sample of NGCC plants, using activated methyldiethanolamine could lead to better technical and economic performances than monoethanolamine in pre- and post-combustion capture systems. Moreover, the efficacy of organic Rankine cycles for enhancing the technical and economic performance of NGCC plants with CO2 capture was shown, with a reduction of up to 1.39 years in the payback period for various process configurations.

Suggested Citation

  • Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2022. "Techno-economic comparison of optimized natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222015201
    DOI: 10.1016/j.energy.2022.124617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Han, Yixiao & Liang, Ying, 2018. "Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion," Applied Energy, Elsevier, vol. 212(C), pages 465-477.
    2. Valiani, Saba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Optimization of pre-combustion capture for thermal power plants using Pinch Analysis," Energy, Elsevier, vol. 119(C), pages 950-960.
    3. Pan, Ming & Aziz, Farah & Li, Baohong & Perry, Simon & Zhang, Nan & Bulatov, Igor & Smith, Robin, 2016. "Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO2 capture," Applied Energy, Elsevier, vol. 161(C), pages 695-706.
    4. Yue Hu & Yachi Gao & Hui Lv & Gang Xu & Shijie Dong, 2018. "A New Integration System for Natural Gas Combined Cycle Power Plants with CO 2 Capture and Heat Supply," Energies, MDPI, vol. 11(11), pages 1-13, November.
    5. Arora, Vipin & Cai, Yiyong & Jones, Ayaka, 2016. "The national and international impacts of coal-to-gas switching in the Chinese power sector," Energy Economics, Elsevier, vol. 60(C), pages 416-426.
    6. Shareq Mohd Nazir & Olav Bolland & Shahriar Amini, 2018. "Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO 2 Capture," Energies, MDPI, vol. 11(1), pages 1-13, January.
    7. Fontina Petrakopoulou & Diego Iribarren & Javier Dufour, 2015. "Life‐cycle performance of natural gas power plants with pre‐combustion CO2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 268-276, June.
    8. Kotowicz, Janusz & Brzęczek, Mateusz, 2019. "Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations ," Energy, Elsevier, vol. 175(C), pages 1100-1120.
    9. Liu, Xiangyu & Hong, Hui & Zhang, Hao & Cao, Yali & Qu, Wanjun & Jin, Hongguang, 2020. "Solar methanol by hybridizing natural gas chemical looping reforming with solar heat," Applied Energy, Elsevier, vol. 277(C).
    10. Gao, Jubao & Cao, Lingdi & Dong, Haifeng & Zhang, Xiangping & Zhang, Suojiang, 2015. "Ionic liquids tailored amine aqueous solution for pre-combustion CO2 capture: Role of imidazolium-based ionic liquids," Applied Energy, Elsevier, vol. 154(C), pages 771-780.
    11. Seo, Su Been & Kim, Hyung Woo & Kang, Seo Yeong & Go, Eun Sol & Keel, Sang In & Lee, See Hoon, 2021. "Techno-economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle," Energy, Elsevier, vol. 233(C).
    12. González-Díaz, Abigail & Alcaráz-Calderón, Agustín M. & González-Díaz, Maria Ortencia & Méndez-Aranda, Ángel & Lucquiaud, Mathieu & González-Santaló, Jose Miguel, 2017. "Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture," Energy, Elsevier, vol. 134(C), pages 221-233.
    13. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    14. Hosseini-Ardali, Seyed Mohsen & Hazrati-Kalbibaki, Majid & Fattahi, Moslem & Lezsovits, Ferenc, 2020. "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, Elsevier, vol. 211(C).
    15. Lueken, Roger & Klima, Kelly & Griffin, W. Michael & Apt, Jay, 2016. "The climate and health effects of a USA switch from coal to gas electricity generation," Energy, Elsevier, vol. 109(C), pages 1160-1166.
    16. Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
    17. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
    18. Otitoju, Olajide & Oko, Eni & Wang, Meihong, 2021. "Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation," Applied Energy, Elsevier, vol. 292(C).
    19. Lee, Sunghoon & Kim, Jin-Kuk, 2020. "Process-integrated design of a sub-ambient membrane process for CO2 removal from natural gas power plants," Applied Energy, Elsevier, vol. 260(C).
    20. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2020. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis," Energies, MDPI, vol. 13(23), pages 1-20, December.
    21. Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    2. Gong, Linjuan & Hou, Guolian & Li, Jun & Gao, Haidong & Gao, Lin & Wang, Lin & Gao, Yaokui & Zhou, Junbo & Wang, Mingkun, 2023. "Intelligent fuzzy modeling of heavy-duty gas turbine for smart power generation," Energy, Elsevier, vol. 277(C).
    3. Veljanovski, N. & ÄŒepin, M., 2024. "Event tree-based risk and financial assessment for power plants," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    2. Oh, Se-Young & Kim, Jin-Kuk, 2018. "Operational optimization for part-load performance of amine-based post-combustion CO2 capture processes," Energy, Elsevier, vol. 146(C), pages 57-66.
    3. Lee, Woo-Sung & Kang, Jun-Ho & Lee, Jae-Cheol & Lee, Chang-Ha, 2020. "Enhancement of energy efficiency by exhaust gas recirculation with oxygen-rich combustion in a natural gas combined cycle with a carbon capture process," Energy, Elsevier, vol. 200(C).
    4. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
    6. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.
    7. Wu, Desheng & Xie, Yu & Liu, Dingjie, 2023. "Rethinking the complex effects of the clean energy transition on air pollution abatement: Evidence from China's coal-to-gas policy," Energy, Elsevier, vol. 283(C).
    8. Zhang, Zhiwei & Hong, Suk-Hoon & Lee, Chang-Ha, 2023. "Role and impact of wash columns on the performance of chemical absorption-based CO2 capture process for blast furnace gas in iron and steel industries," Energy, Elsevier, vol. 271(C).
    9. Oh, Se-Young & Yun, Seokwon & Kim, Jin-Kuk, 2018. "Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process," Applied Energy, Elsevier, vol. 216(C), pages 311-322.
    10. Shamsi, Mohammad & Naeiji, Esfandiyar & Rooeentan, Saeed & Shahandashty, Behnam Fayyaz & Namegoshayfard, Parham & Bonyadi, Mohammad, 2023. "Proposal and investigation of CO2 capture from fired heater flue gases to increase methanol production: A case study," Energy, Elsevier, vol. 274(C).
    11. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    12. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    13. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    14. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    15. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    16. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    17. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    18. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    19. Lu, J.F. & Dong, Y.X. & Wang, Y.R. & Wang, W.L. & Ding, J., 2022. "High efficient thermochemical energy storage of methane reforming with carbon dioxide in cavity reactor with novel catalyst bed under concentrated sun simulator," Renewable Energy, Elsevier, vol. 188(C), pages 361-371.
    20. Michael L. Carty & Stephane Bilodeau, 2023. "Benchmarking Thermodynamic Models for Optimization of PSA Oxygen Generators," J, MDPI, vol. 6(2), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222015201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.