Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.05.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Arrieta, Felipe R. Ponce & Lora, Electo E. Silva, 2005. "Influence of ambient temperature on combined-cycle power-plant performance," Applied Energy, Elsevier, vol. 80(3), pages 261-272, March.
- Chuang, Chia-Chin & Sue, Deng-Chern, 2005. "Performance effects of combined cycle power plant with variable condenser pressure and loading," Energy, Elsevier, vol. 30(10), pages 1793-1801.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Barakat, Elsayed & Jin, Tai & Wang, Gaofeng, 2023. "Performance analysis of selective exhaust gas recirculation integrated with fogging cooling system for gas turbine power plants," Energy, Elsevier, vol. 263(PC).
- Wu, Zhicong & Xu, Gang & Ge, Shiyu & Yang, Zhenjun & Xue, Xiaojun & Chen, Heng, 2024. "An efficient methanol pre-reforming gas turbine combined cycle with integration of mid-temperature energy upgradation and CO2 recovery: Thermodynamic and economic analysis," Applied Energy, Elsevier, vol. 358(C).
- Apan-Ortiz, Jorge Igor & Sanchez-Fernández, Eva & González-Díaz, Abigail, 2018. "Use of steam jet booster as an integration strategy to operate a natural gas combined cycle with post-combustion CO2 capture at part-load," Energy, Elsevier, vol. 165(PB), pages 126-139.
- Maheshwari, Mayank & Singh, Onkar, 2020. "Thermo-economic analysis of combined cycle configurations with intercooling and reheating," Energy, Elsevier, vol. 205(C).
- Cheng, Xianda & Zheng, Haoran & Dong, Wei & Yang, Xuesen, 2023. "Performance prediction of marine intercooled cycle gas turbine based on expanded similarity parameters," Energy, Elsevier, vol. 265(C).
- Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2022. "Techno-economic comparison of optimized natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 255(C).
- Shankar Ganesh Pariasamy & Vinod Kumar Venkiteswaran & Jeyanandan Kumar & Mohamed M. Awad, 2022. "Industrial CHP with Steam Systems: A Review of Recent Case Studies, Trends and Relevance to Malaysian Industry," Energies, MDPI, vol. 15(20), pages 1-15, October.
- Christos Manasis & Nicholas Assimakis & Vasilis Vikias & Aphrodite Ktena & Tassos Stamatelos, 2020. "Power Generation Prediction of an Open Cycle Gas Turbine Using Kalman Filter," Energies, MDPI, vol. 13(24), pages 1-15, December.
- Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
- Gifford, Jeffrey & Wang, Xingchao & Ma, Zhiwen & Braun, Robert, 2024. "Modeling electrical particle thermal energy storage systems for long-duration, grid-electricity storage applications," Applied Energy, Elsevier, vol. 371(C).
- Meng, Measrainsey & Sanders, Kelly T., 2019. "A data-driven approach to investigate the impact of air temperature on the efficiencies of coal and natural gas generators," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Zhang, Yuanzhe & Liu, Pei & Li, Zheng, 2023. "Gas turbine off-design behavior modelling and operation windows analysis under different ambient conditions," Energy, Elsevier, vol. 262(PA).
- Díaz-Herrera, Pablo R. & Alcaraz-Calderón, Agustín M. & González-Díaz, Maria Ortencia & González-Díaz, Abigail, 2020. "Capture level design for a natural gas combined cycle with post-combustion CO2 capture using novel configurations," Energy, Elsevier, vol. 193(C).
- Abdin, I.F. & Fang, Y.-P. & Zio, E., 2019. "A modeling and optimization framework for power systems design with operational flexibility and resilience against extreme heat waves and drought events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 706-719.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Hao & Liu, Simin & Liu, Qiufeng & Shi, Xueli & Wei, Wendong & Han, Rong & Küfeoğlu, Sinan, 2021. "Estimating the impacts of climate change on electricity supply infrastructure: A case study of China," Energy Policy, Elsevier, vol. 150(C).
- Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
- Vitaly Sergeev & Irina Anikina & Konstantin Kalmykov, 2021. "Using Heat Pumps to Improve the Efficiency of Combined-Cycle Gas Turbines," Energies, MDPI, vol. 14(9), pages 1-26, May.
- Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
- Zhang, Yuanzhe & Liu, Pei & Li, Zheng, 2023. "Gas turbine off-design behavior modelling and operation windows analysis under different ambient conditions," Energy, Elsevier, vol. 262(PA).
- Ge, Y.T. & Tassou, S.A. & Chaer, I. & Suguartha, N., 2009. "Performance evaluation of a tri-generation system with simulation and experiment," Applied Energy, Elsevier, vol. 86(11), pages 2317-2326, November.
- Kristin Linnerud & Torben K. Mideksa & Gunnar S. Eskeland, 2011.
"The Impact of Climate Change on Nuclear Power Supply,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 149-168.
- Kristin Linnerud & Torben K. Mideksa & Gunnar S. Eskeland, 2011. "The Impact of Climate Change on Nuclear Power Supply," The Energy Journal, , vol. 32(1), pages 149-168, January.
- Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.
- Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Dynamic modeling and operation optimization for the cold end system of thermal power plants during transient processes," Energy, Elsevier, vol. 145(C), pages 734-746.
- Li, Hailong & Ditaranto, Mario & Yan, Jinyue, 2012. "Carbon capture with low energy penalty: Supplementary fired natural gas combined cycles," Applied Energy, Elsevier, vol. 97(C), pages 164-169.
- Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.
- Alqahtani, Bandar Jubran & Patiño-Echeverri, Dalia, 2016. "Integrated Solar Combined Cycle Power Plants: Paving the way for thermal solar," Applied Energy, Elsevier, vol. 169(C), pages 927-936.
- Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
- Jesus L. Lobo & Igor Ballesteros & Izaskun Oregi & Javier Del Ser & Sancho Salcedo-Sanz, 2020. "Stream Learning in Energy IoT Systems: A Case Study in Combined Cycle Power Plants," Energies, MDPI, vol. 13(3), pages 1-28, February.
- Zhang, Guoqiang & Zheng, Jiongzhi & Yang, Yongping & Liu, Wenyi, 2016. "A novel LNG cryogenic energy utilization method for inlet air cooling to improve the performance of combined cycle," Applied Energy, Elsevier, vol. 179(C), pages 638-649.
- Variny, Miroslav & Mierka, Otto, 2009. "Improvement of part load efficiency of a combined cycle power plant provisioning ancillary services," Applied Energy, Elsevier, vol. 86(6), pages 888-894, June.
- Lee, Jae Hong & Kim, Tong Seop & Kim, Eui-hwan, 2017. "Prediction of power generation capacity of a gas turbine combined cycle cogeneration plant," Energy, Elsevier, vol. 124(C), pages 187-197.
- Dunham, Marc T. & Iverson, Brian D., 2014. "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 758-770.
- Liqiang Duan & Zhen Wang, 2018. "Performance Study of a Novel Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(12), pages 1-22, December.
- Maria Elena Diego & Muhammad Akram & Jean‐Michel Bellas & Karen N. Finney & Mohamed Pourkashanian, 2017. "Making gas‐CCS a commercial reality: The challenges of scaling up," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(5), pages 778-801, October.
More about this item
Keywords
Ambient temperature; CO2 capture; Natural gas combined cycle; Supplementary firing;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:134:y:2017:i:c:p:221-233. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.