IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipcs0360544222013834.html
   My bibliography  Save this article

Energy and exergy analyses of a parabolic trough concentrated solar power plant using molten salt during the start-up process

Author

Listed:
  • Zhang, Shunqi
  • Liu, Ming
  • Zhao, Yongliang
  • Liu, Jiping
  • Yan, Junjie

Abstract

Daily start-up is the character of concentrated solar power (CSP) plants because of solar energy intermittency. Thus, much energy is consumed during the start-up process of CSPs plants. Detailed energy and exergy analyses on the start-up process can guide CSP design and operation. In this study, energy and exergy analyses for parabolic trough concentrated solar power plants using molten salt during start-up processes were conducted, and the distributions and causes of energy loss were investigated. Results indicate that the total start-up energy loss accounts for 52.32% of total input energy. Collector optical loss, turbine cold source loss, and receiver heat loss are major ones, accounting for 45.80%, 23.11%, and 17.91% of the total energy loss, respectively. The exergy loss of the entire start-up process accounts for 67.11% of the total input exergy. Collector exergy loss due to optical efficiency and receiver exergy loss due to heat loss are major ones, accounting for 77.74% and 9.19% of the total exergy loss, respectively. Compared with recirculating pump utilization, utilizing the molten salt anti-freezing solution of the low-load regenerative heater can reduce start-up energy consumption. This work can lay a foundation for the energy-saving optimization of CSP plants during start-up processes.

Suggested Citation

  • Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2022. "Energy and exergy analyses of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Energy, Elsevier, vol. 254(PC).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013834
    DOI: 10.1016/j.energy.2022.124480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222013834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Qiao, Yongqiang & Yan, Junjie, 2018. "Entropy generation analysis on a heat exchanger with different design and operation factors during transient processes," Energy, Elsevier, vol. 158(C), pages 330-342.
    2. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2021. "Dynamic simulation and performance analysis of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Renewable Energy, Elsevier, vol. 179(C), pages 1458-1471.
    4. Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).
    5. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Wang, Zhu & Chong, Daotong & Yan, Junjie, 2019. "Exergy analysis of the regulating measures of operational flexibility in supercritical coal-fired power plants during transient processes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Singh, Narendra & Kaushik, S.C. & Misra, R.D., 2000. "Exergetic analysis of a solar thermal power system," Renewable Energy, Elsevier, vol. 19(1), pages 135-143.
    7. Wang, Chaoyang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2021. "Thermodynamic optimization of the superheater during switching the load transient processes," Energy, Elsevier, vol. 218(C).
    8. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    9. Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
    10. Zaaoumi, Anass & Bah, Abdellah & Ciocan, Mihaela & Sebastian, Patrick & Balan, Mugur C. & Mechaqrane, Abdellah & Alaoui, Mohammed, 2021. "Estimation of the energy production of a parabolic trough solar thermal power plant using analytical and artificial neural networks models," Renewable Energy, Elsevier, vol. 170(C), pages 620-638.
    11. Li, Xiaolei & Xu, Ershu & Ma, Linrui & Song, Shuang & Xu, Li, 2019. "Modeling and dynamic simulation of a steam generation system for a parabolic trough solar power plant," Renewable Energy, Elsevier, vol. 132(C), pages 998-1017.
    12. Yu, Qiang & Li, Xiaolei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant," Energy, Elsevier, vol. 198(C).
    13. Yan, Hui & Liu, Ming & Chong, Daotong & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy comparison of a solar-aided coal-fired power plant based on energy and exergy analyses," Energy, Elsevier, vol. 236(C).
    14. Lopes, Telma & Fasquelle, Thomas & Silva, Hugo G., 2021. "Pressure drops, heat transfer coefficient, costs and power block design for direct storage parabolic trough power plants running molten salts," Renewable Energy, Elsevier, vol. 163(C), pages 530-543.
    15. Wang, Anming & Liu, Jiping & Zhang, Shunqi & Liu, Ming & Yan, Junjie, 2020. "Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions," Applied Energy, Elsevier, vol. 265(C).
    16. Wang, Jiangjiang & Chen, Yuzhu & Lior, Noam & Li, Weihua, 2019. "Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system integrated with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 185(C), pages 463-476.
    17. Liu, Rongtang & Liu, Ming & Zhao, Yongliang & Ma, Yuegeng & Yan, Junjie, 2021. "Thermodynamic study of a novel lignite poly-generation system driven by solar energy," Energy, Elsevier, vol. 214(C).
    18. Chang, Chun & Sciacovelli, Adriano & Wu, Zhiyong & Li, Xin & Li, Yongliang & Zhao, Mingzhi & Deng, Jie & Wang, Zhifeng & Ding, Yulong, 2018. "Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 220(C), pages 337-350.
    19. Reddy, V. Siva & Kaushik, S.C. & Tyagi, S.K., 2012. "Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP)," Energy, Elsevier, vol. 39(1), pages 258-273.
    20. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    21. Liu, Ming & Wang, Shan & Yan, Junjie, 2021. "Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
    2. Xue, Xue & Liu, Xiang & Zhu, Yifan & Yuan, Lei & Zhu, Ying & Jin, Kelang & Zhang, Lei & Zhou, Hao, 2023. "Numerical modeling and parametric study of the heat storage process of the 1.05 MW molten salt furnace," Energy, Elsevier, vol. 282(C).
    3. Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Alawi, Omer A. & Kamar, Haslinda Mohamed & Homod, Raad Z. & Yaseen, Zaher Mundher, 2024. "Incorporating artificial intelligence-powered prediction models for exergy efficiency evaluation in parabolic trough collectors," Renewable Energy, Elsevier, vol. 225(C).
    5. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Zhang, Kezhen & Liu, Jiping & Yan, Junjie, 2022. "Thermodynamic analysis on a novel bypass steam recovery system for parabolic trough concentrated solar power plants during start-up processes," Renewable Energy, Elsevier, vol. 198(C), pages 973-983.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2021. "Dynamic simulation and performance analysis of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Renewable Energy, Elsevier, vol. 179(C), pages 1458-1471.
    2. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Zhang, Kezhen & Liu, Jiping & Yan, Junjie, 2022. "Thermodynamic analysis on a novel bypass steam recovery system for parabolic trough concentrated solar power plants during start-up processes," Renewable Energy, Elsevier, vol. 198(C), pages 973-983.
    3. Zhang, Shunqi & Liu, Ming & Ma, Yuegeng & Liu, Jiping & Yan, Junjie, 2021. "Flexibility assessment of a modified double-reheat Rankine cycle integrating a regenerative turbine during recuperative heater shutdown processes," Energy, Elsevier, vol. 233(C).
    4. Yao, Lingxiang & Xiao, Xianyong & Wang, Yang & Yao, Xiaoming & Ma, Zhicheng, 2022. "Dynamic modeling and hierarchical control of a concentrated solar power plant with direct molten salt storage," Energy, Elsevier, vol. 252(C).
    5. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    6. Zhang, Peiye & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2023. "Performance analysis on the parabolic trough solar receiver-reactor of methanol decomposition reaction under off-design conditions and during dynamic processes," Renewable Energy, Elsevier, vol. 205(C), pages 583-597.
    7. Wang, Anming & Liu, Jiping & Zhang, Shunqi & Liu, Ming & Yan, Junjie, 2020. "Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions," Applied Energy, Elsevier, vol. 265(C).
    8. Li, Gen & Du, Guanghan & Liu, Guixiu & Yan, Junjie, 2024. "Study on the dynamic characteristics, control strategies and load variation rates of the concentrated solar power plant," Applied Energy, Elsevier, vol. 357(C).
    9. Yin, Junjie & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy modification for coal-fired power unit under coal quality variation," Energy, Elsevier, vol. 223(C).
    10. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    11. Ranjan, K.R. & Kaushik, S.C., 2014. "Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 123-139.
    12. Wang, Qiliang & Yao, Yao & Shen, Yongting & Shen, Zhicheng & Yang, Hongxing, 2024. "A mutually beneficial system incorporating parabolic trough concentrating solar power system with photovoltaics: A comprehensive techno-economic analysis," Applied Energy, Elsevier, vol. 360(C).
    13. Li, Xin & Wu, Xian & Gui, De & Hua, Yawen & Guo, Panfeng, 2021. "Power system planning based on CSP-CHP system to integrate variable renewable energy," Energy, Elsevier, vol. 232(C).
    14. Dabwan, Yousef N. & Pei, Gang & Kwan, Trevor Hocksun & Zhao, Bin, 2021. "An innovative hybrid solar preheating intercooled gas turbine using parabolic trough collectors," Renewable Energy, Elsevier, vol. 179(C), pages 1009-1026.
    15. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
    16. Chunlai Yang & Xiaoguang Hao & Qijun Zhang & Heng Chen & Zhe Yin & Fei Jin, 2023. "Performance Analysis of a 300 MW Coal-Fired Power Unit during the Transient Processes for Peak Shaving," Energies, MDPI, vol. 16(9), pages 1-17, April.
    17. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    18. Mendoza Castellanos, Luis Sebastián & Galindo Noguera, Ana Lisbeth & Gutiérrez Velásquez, Elkin I. & Caballero, Gaylord Enrique Carrillo & Silva Lora, Electo Eduardo & Melian Cobas, Vladimir Rafael, 2020. "Mathematical modeling of a system composed of parabolic trough solar collectors integrated with a hydraulic energy storage system," Energy, Elsevier, vol. 208(C).
    19. Gupta, M.K. & Kaushik, S.C. & Ranjan, K.R. & Panwar, N.L. & Reddy, V. Siva & Tyagi, S.K., 2015. "Thermodynamic performance evaluation of solar and other thermal power generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 567-582.
    20. Boukelia, T.E. & Mecibah, M.S. & Kumar, B.N. & Reddy, K.S., 2015. "Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt," Energy, Elsevier, vol. 88(C), pages 292-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.