IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v236y2021ics0360544221017631.html
   My bibliography  Save this article

Dynamic performance and control strategy comparison of a solar-aided coal-fired power plant based on energy and exergy analyses

Author

Listed:
  • Yan, Hui
  • Liu, Ming
  • Chong, Daotong
  • Wang, Chaoyang
  • Yan, Junjie

Abstract

Solar-aided coal-fired power generation is a hybrid technique to generate power with the coal and solar energy. The performance of solar-aided coal-fired power plant (SACFPP) with solar irradiance fluctuations received little attention in previous studies. Dynamic and exergy analysis models of SACFPP are developed to evaluate the SACFPP performance in transient processes caused by solar irradiance disturbances and the consequent system regulation. An SACFPP integrating the trough collector system (TCS) in parallel with HP2 and HP3 heaters of a 660 MW coal-fired power plant is simulated. Influences of solar irradiance and feedwater ratio to TCS disturbances on SACFPP performance are analyzed, including step cases and typical solar days. The solar-to-power exergy efficiency fluctuates sharply in the dynamic process. It increases from 32.62% to 57.25% and decreases to 28.1% when solar irradiance step decreases from 700 to 400 W m−2. Accumulations of additional power and exergy destruction are the highest in Autumn Equinox. Then, control strategies of feedwater flow to TCS are proposed and compared to obtain maximal solar-to-power exergy efficiency during transients. Results indicate that the feedwater flow to TCS should follow the solar irradiance decrease with a dynamic period of less than 200 s; otherwise, extra exergy destruction occurs.

Suggested Citation

  • Yan, Hui & Liu, Ming & Chong, Daotong & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy comparison of a solar-aided coal-fired power plant based on energy and exergy analyses," Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017631
    DOI: 10.1016/j.energy.2021.121515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221017631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Yong & Zhai, Rongrong & Qi, Jiawei & Yang, Yongping & Reyes-Belmonte, M.A. & Romero, Manuel & Yan, Qin, 2017. "Annual performance of solar tower aided coal-fired power generation system," Energy, Elsevier, vol. 119(C), pages 662-674.
    2. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    3. Zhang, Nan & Yu, Gang & Huang, Chang & Duan, Liqiang & Hou, Hongjuan & Hu, Eric & Ding, Zeyu & Wang, Jianhua, 2020. "Full-day dynamic characteristics analysis of a solar aided coal-fired power plant in fuel saving mode," Energy, Elsevier, vol. 208(C).
    4. Wang, Jianxing & Duan, Liqiang & Yang, Yongping & Yang, Zhiping & Yang, Laishun, 2019. "Study on the general system integration optimization method of the solar aided coal-fired power generation system," Energy, Elsevier, vol. 169(C), pages 660-673.
    5. Wang, Chaoyang & Liu, Ming & Li, Bingxin & Liu, Yiwen & Yan, Junjie, 2017. "Thermodynamic analysis on the transient cycling of coal-fired power plants: Simulation study of a 660 MW supercritical unit," Energy, Elsevier, vol. 122(C), pages 505-527.
    6. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    7. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    8. Hu, Eric & Yang, YongPing & Nishimura, Akira & Yilmaz, Ferdi & Kouzani, Abbas, 2010. "Solar thermal aided power generation," Applied Energy, Elsevier, vol. 87(9), pages 2881-2885, September.
    9. Wang, Ruilin & Sun, Jie & Hong, Hui, 2019. "Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking," Renewable Energy, Elsevier, vol. 141(C), pages 596-612.
    10. Li, Chao & Yang, Zhiping & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E., 2018. "Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage," Energy, Elsevier, vol. 163(C), pages 956-968.
    11. Yin, Junjie & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy modification for coal-fired power unit under coal quality variation," Energy, Elsevier, vol. 223(C).
    12. Darmani, Anna & Arvidsson, Niklas & Hidalgo, Antonio & Albors, Jose., 2014. "What drives the development of renewable energy technologies? Toward a typology for the systemic drivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 834-847.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Hui & Chong, Daotong & Wang, Zhu & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2022. "Dynamic performance enhancement of solar-aided coal-fired power plant by control strategy optimization with solar/coal-to-power conversion characteristics," Energy, Elsevier, vol. 244(PA).
    2. Li, Chao & Sun, Yang & Bi, Tianjiao & Zhai, Rongrong, 2023. "Performance enhancement of a solar-assisted pulverized coal power system by integrating a supercritical CO2 cycle," Renewable Energy, Elsevier, vol. 219(P1).
    3. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2022. "Energy and exergy analyses of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Energy, Elsevier, vol. 254(PC).
    4. Pan, Peiyuan & Peng, Weike & Li, Jiarui & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation," Energy, Elsevier, vol. 238(PC).
    5. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    6. Shi, Xueqiang & Wu, Hao & Jin, Penggang & Zhang, Yutao & Zhang, Yuanbo & Jiao, Fengyuan & Zhang, Yun & Cao, Weiguo, 2023. "On the influence of material and shape of the hot particles on the ignition characteristics of coal dust," Energy, Elsevier, vol. 281(C).
    7. Li, Chao & Zhai, Rongrong, 2024. "A novel solar tower assisted pulverized coal power system considering solar energy cascade utilization: Performance analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 222(C).
    8. Zhang, Peiye & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2023. "Performance analysis on the parabolic trough solar receiver-reactor of methanol decomposition reaction under off-design conditions and during dynamic processes," Renewable Energy, Elsevier, vol. 205(C), pages 583-597.
    9. Yesilyurt, Muhammed Samil & Ozcan, Huseyin Gunhan & Yavasoglu, Huseyin Ayhan, 2023. "Co-simulation-based conventional exergy evaluation of a hybrid energy generation-vanadium redox flow battery-air source heat pump system," Energy, Elsevier, vol. 281(C).
    10. Chunlai Yang & Xiaoguang Hao & Qijun Zhang & Heng Chen & Zhe Yin & Fei Jin, 2023. "Performance Analysis of a 300 MW Coal-Fired Power Unit during the Transient Processes for Peak Shaving," Energies, MDPI, vol. 16(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Hui & Chong, Daotong & Wang, Zhu & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2022. "Dynamic performance enhancement of solar-aided coal-fired power plant by control strategy optimization with solar/coal-to-power conversion characteristics," Energy, Elsevier, vol. 244(PA).
    2. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).
    3. Jiang, Yue & Duan, Liqiang & Pang, Liping & Song, Jifeng, 2021. "Thermal performance study of tower solar aided double reheat coal-fired power generation system," Energy, Elsevier, vol. 230(C).
    4. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    5. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    6. Li, Chao & Zhai, Rongrong, 2024. "A novel solar tower assisted pulverized coal power system considering solar energy cascade utilization: Performance analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 222(C).
    7. Zhang, Nan & Yu, Gang & Huang, Chang & Duan, Liqiang & Hou, Hongjuan & Hu, Eric & Ding, Zeyu & Wang, Jianhua, 2020. "Full-day dynamic characteristics analysis of a solar aided coal-fired power plant in fuel saving mode," Energy, Elsevier, vol. 208(C).
    8. Shagdar, Enkhbayar & Lougou, Bachirou Guene & Shuai, Yong & Anees, Junaid & Damdinsuren, Chimedsuren & Tan, Heping, 2020. "Performance analysis and techno-economic evaluation of 300 MW solar-assisted power generation system in the whole operation conditions," Applied Energy, Elsevier, vol. 264(C).
    9. Li, Chao & Sun, Yang & Bi, Tianjiao & Zhai, Rongrong, 2023. "Performance enhancement of a solar-assisted pulverized coal power system by integrating a supercritical CO2 cycle," Renewable Energy, Elsevier, vol. 219(P1).
    10. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Chen, Si & Yang, Yongping, 2020. "Measures to reduce solar energy dumped in a solar aided power generation plant," Applied Energy, Elsevier, vol. 258(C).
    11. Vinod Kumar & Liqiang Duan, 2021. "Off-Design Dynamic Performance Analysis of a Solar Aided Coal-Fired Power Plant," Energies, MDPI, vol. 14(10), pages 1-16, May.
    12. Li, Chao & Yang, Zhiping & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E., 2018. "Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage," Energy, Elsevier, vol. 163(C), pages 956-968.
    13. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    14. Li, Jianlan & Xin, Yu & Hu, Bo & Zeng, Kuo & Wu, Zhiyi & Fan, Shiwang & Li, Yuanyuan & Chen, Yongzhao & Wang, Shunjiang & Wang, Jizhou & Min, Yong & Li, Jun & Flamant, Gilles, 2021. "Safety and thermal efficiency performance assessment of solar aided coal-fired power plant based on turbine steam double reheat," Energy, Elsevier, vol. 226(C).
    15. Qin, Jiyun & Zhang, Qinglei & Hu, Eric & Duan, Jianguo & Zhou, Ying & Zhang, Hongsheng, 2022. "Optimisation of Solar Aided Power Generation plant with storage system adopting two non-displaced extraction steam operation strategies," Energy, Elsevier, vol. 239(PA).
    16. Wang, Jianxing & Duan, Liqiang & Yang, Yongping & Yang, Zhiping & Yang, Laishun, 2019. "Study on the general system integration optimization method of the solar aided coal-fired power generation system," Energy, Elsevier, vol. 169(C), pages 660-673.
    17. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    19. Wang, Ruilin & Sun, Jie & Hong, Hui, 2019. "Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking," Renewable Energy, Elsevier, vol. 141(C), pages 596-612.
    20. Zhang, Nan & Zhang, Yumeng & Duan, Liqiang & Hou, Hongjuan & Zhang, Hanfei & Zhou, Yong & Bao, Weiwei, 2023. "Combining integrated solar combined cycle with wind-PV plants to provide stable power: Operation strategy and dynamic performance study," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.