IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222009021.html
   My bibliography  Save this article

Dynamic modeling and hierarchical control of a concentrated solar power plant with direct molten salt storage

Author

Listed:
  • Yao, Lingxiang
  • Xiao, Xianyong
  • Wang, Yang
  • Yao, Xiaoming
  • Ma, Zhicheng

Abstract

Concentrated solar power (CSP) plant with direct molten salt storage plays an important role in future commercial projects for its high flexibility and reliability. To fully understand its thermodynamic performances and electrical characteristics under various meteorological conditions and load demands, an accurate dynamic model is essential. Although some effort has been devoted to this topic, a complete control system for the plant can hardly be found in the literature. The lack of such information has made the modeling and the analysis of the CSP plant difficult in various applications. This study establishes a detailed CSP plant model and proposes a complete two-level hierarchical control system for a real-life 50 MW linear Fresnel CSP plant located in northwest China. The effectiveness of the developed model has been validated with the real operation data from both static and dynamic perspectives. Then, the plant dynamic behaviors and the performances of the control system under various disturbances are analyzed in detail. The comparison results indicate that the proposed control system shows satisfactory performance (errors within ±1.5%p0 and ±0.5%Pe0) and can effectively inhibit influences of various disturbances. Therefore, the developed model with the proposed control system can serve as a powerful tool for CSP-related research.

Suggested Citation

  • Yao, Lingxiang & Xiao, Xianyong & Wang, Yang & Yao, Xiaoming & Ma, Zhicheng, 2022. "Dynamic modeling and hierarchical control of a concentrated solar power plant with direct molten salt storage," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009021
    DOI: 10.1016/j.energy.2022.123999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grena, Roberto & Tarquini, Pietro, 2011. "Solar linear Fresnel collector using molten nitrates as heat transfer fluid," Energy, Elsevier, vol. 36(2), pages 1048-1056.
    2. Manenti, Flavio & Ravaghi-Ardebili, Zohreh, 2013. "Dynamic simulation of concentrating solar power plant and two-tanks direct thermal energy storage," Energy, Elsevier, vol. 55(C), pages 89-97.
    3. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    4. Li, Xiaolei & Xu, Ershu & Ma, Linrui & Song, Shuang & Xu, Li, 2019. "Modeling and dynamic simulation of a steam generation system for a parabolic trough solar power plant," Renewable Energy, Elsevier, vol. 132(C), pages 998-1017.
    5. Montes, María J. & Rubbia, Carlo & Abbas, Rubén & Martínez-Val, José M., 2014. "A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power," Energy, Elsevier, vol. 73(C), pages 192-203.
    6. Ferruzza, Davide & Kærn, Martin Ryhl & Haglind, Fredrik, 2020. "A method to account for transient performance requirements in the design of steam generators for concentrated solar power applications," Applied Energy, Elsevier, vol. 269(C).
    7. Zhang, Qiang & Wang, Zhiming & Du, Xiaoze & Yu, Gang & Wu, Hongwei, 2019. "Dynamic simulation of steam generation system in solar tower power plant," Renewable Energy, Elsevier, vol. 135(C), pages 866-876.
    8. Yu, Qiang & Li, Xiaolei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant," Energy, Elsevier, vol. 198(C).
    9. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    10. Qiu, Yu & Li, Ming-Jia & Wang, Wen-Qi & Du, Bao-Cun & Wang, Kun, 2018. "An experimental study on the heat transfer performance of a prototype molten-salt rod baffle heat exchanger for concentrated solar power," Energy, Elsevier, vol. 156(C), pages 63-72.
    11. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    12. Desideri, Umberto & Campana, Pietro Elia, 2014. "Analysis and comparison between a concentrating solar and a photovoltaic power plant," Applied Energy, Elsevier, vol. 113(C), pages 422-433.
    13. Wang, Anming & Liu, Jiping & Zhang, Shunqi & Liu, Ming & Yan, Junjie, 2020. "Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions," Applied Energy, Elsevier, vol. 265(C).
    14. Yu, Qiang & Fu, Peng & Yang, Yihui & Qiao, Jiafei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and parametric study of molten salt receiver of concentrating solar power tower plant," Energy, Elsevier, vol. 200(C).
    15. Xu, Ershu & Wang, Zhifeng & Wei, Gao & Zhuang, Jiayan, 2012. "Dynamic simulation of thermal energy storage system of Badaling 1 MW solar power tower plant," Renewable Energy, Elsevier, vol. 39(1), pages 455-462.
    16. Zhang, Qiang & Jiang, Kaijun & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2021. "Control strategy of molten salt solar power tower plant function as peak load regulation in grid," Applied Energy, Elsevier, vol. 294(C).
    17. Cocco, Daniele & Serra, Fabio, 2015. "Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants," Energy, Elsevier, vol. 81(C), pages 526-536.
    18. Zurita, Adriana & Mata-Torres, Carlos & Cardemil, José M. & Guédez, Rafael & Escobar, Rodrigo A., 2021. "Multi-objective optimal design of solar power plants with storage systems according to dispatch strategy," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Xue & Liu, Xiang & Zhu, Yifan & Yuan, Lei & Zhu, Ying & Jin, Kelang & Zhang, Lei & Zhou, Hao, 2023. "Numerical modeling and parametric study of the heat storage process of the 1.05 MW molten salt furnace," Energy, Elsevier, vol. 282(C).
    2. Ma, Tingshan & Li, Zhengkuan & Lv, Kai & Chang, Dongfeng & Hu, Wenshuai & Zou, Ying, 2024. "Design and performance analysis of deep peak shaving scheme for thermal power units based on high-temperature molten salt heat storage system," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Gen & Du, Guanghan & Liu, Guixiu & Yan, Junjie, 2024. "Study on the dynamic characteristics, control strategies and load variation rates of the concentrated solar power plant," Applied Energy, Elsevier, vol. 357(C).
    2. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2021. "Dynamic simulation and performance analysis of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Renewable Energy, Elsevier, vol. 179(C), pages 1458-1471.
    3. Zhang, Qiang & Cao, Donghong & Jiang, Kaijun & Du, Xiaoze & Xu, Ershu, 2020. "Heat transport characteristics of a peak shaving solar power tower station," Renewable Energy, Elsevier, vol. 156(C), pages 493-508.
    4. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2022. "Energy and exergy analyses of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Energy, Elsevier, vol. 254(PC).
    5. Zhang, Qiang & Jiang, Kaijun & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2021. "Control strategy of molten salt solar power tower plant function as peak load regulation in grid," Applied Energy, Elsevier, vol. 294(C).
    6. Wang, Anming & Liu, Jiping & Zhang, Shunqi & Liu, Ming & Yan, Junjie, 2020. "Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions," Applied Energy, Elsevier, vol. 265(C).
    7. Yu, Qiang & Li, Xiaolei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant," Energy, Elsevier, vol. 198(C).
    8. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    9. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Zhang, Kezhen & Liu, Jiping & Yan, Junjie, 2022. "Thermodynamic analysis on a novel bypass steam recovery system for parabolic trough concentrated solar power plants during start-up processes," Renewable Energy, Elsevier, vol. 198(C), pages 973-983.
    10. González-Gómez, P.A. & Laporte-Azcué, M. & Fernández-Torrijos, M. & Santana, D., 2022. "Design optimization and structural assessment of a header and coil steam generator for load-following solar tower plants," Renewable Energy, Elsevier, vol. 192(C), pages 456-471.
    11. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    13. Wang, Di & Han, Xinrui & Li, Haoyu & Li, Xiaoli, 2023. "Dynamic simulation and parameter analysis of solar-coal hybrid power plant based on the supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 272(C).
    14. Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
    15. Zhang, Shunqi & Liu, Ming & Ma, Yuegeng & Liu, Jiping & Yan, Junjie, 2021. "Flexibility assessment of a modified double-reheat Rankine cycle integrating a regenerative turbine during recuperative heater shutdown processes," Energy, Elsevier, vol. 233(C).
    16. Elfeky, Karem Elsayed & Mohammed, Abubakar Gambo & Wang, Qiuwang, 2021. "Cycle cut-off criterion effect on the performance of cascaded, sensible, combined sensible-latent heat storage tank for concentrating solar power plants," Energy, Elsevier, vol. 230(C).
    17. Ravaghi-Ardebili, Zohreh & Manenti, Flavio, 2015. "Unified modeling and feasibility study of novel green pathway of biomass to methanol/dimethylether," Applied Energy, Elsevier, vol. 145(C), pages 278-294.
    18. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    19. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    20. Mendoza Castellanos, Luis Sebastián & Galindo Noguera, Ana Lisbeth & Gutiérrez Velásquez, Elkin I. & Caballero, Gaylord Enrique Carrillo & Silva Lora, Electo Eduardo & Melian Cobas, Vladimir Rafael, 2020. "Mathematical modeling of a system composed of parabolic trough solar collectors integrated with a hydraulic energy storage system," Energy, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.