IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v170y2021icp620-638.html
   My bibliography  Save this article

Estimation of the energy production of a parabolic trough solar thermal power plant using analytical and artificial neural networks models

Author

Listed:
  • Zaaoumi, Anass
  • Bah, Abdellah
  • Ciocan, Mihaela
  • Sebastian, Patrick
  • Balan, Mugur C.
  • Mechaqrane, Abdellah
  • Alaoui, Mohammed

Abstract

The accurate estimation of a concentrated solar power plant production is an important issue because of the fluctuations in meteorological parameters like solar radiation, ambient temperature, wind speed, and humidity. In this work, three models were conducted in order to estimate the hourly electric production of a parabolic trough solar thermal power plant (PTSTPP) located at Ain Beni-Mathar in Eastern Morocco. First, two analytical models are considered. The first analytical model (AM I) is based on calculating the heat losses of parabolic trough collectors (PTCs), while the second analytical model (AM II) is based on the thermal efficiency of PTCs. The third model is an artificial neural networks (ANN) model derived from artificial intelligence techniques. All models are validated using one year of real operating data. The simulation results indicate that the ANN model performs much better than the analytical models. Accordingly, the ANN model results show that the estimated annual electrical energy is about 42.6 GW h/year, while the operating energy is approximately 44.7 GWh/year. The frequency of occurrence shows that 86.77% of hourly values were estimated with a deviation of less than 3 MW h. The developed ANN model is readily useable to estimate energy production for PTSTPP.

Suggested Citation

  • Zaaoumi, Anass & Bah, Abdellah & Ciocan, Mihaela & Sebastian, Patrick & Balan, Mugur C. & Mechaqrane, Abdellah & Alaoui, Mohammed, 2021. "Estimation of the energy production of a parabolic trough solar thermal power plant using analytical and artificial neural networks models," Renewable Energy, Elsevier, vol. 170(C), pages 620-638.
  • Handle: RePEc:eee:renene:v:170:y:2021:i:c:p:620-638
    DOI: 10.1016/j.renene.2021.01.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121001361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2022. "Energy and exergy analyses of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Energy, Elsevier, vol. 254(PC).
    2. Vinod, J. & Sarkar, Bikash K. & Sanyal, Dipankar, 2022. "Flow control in a small Francis turbine by system identification and fuzzy adaptation of PID and deadband controllers," Renewable Energy, Elsevier, vol. 201(P2), pages 87-99.
    3. Asif Afzal & Saad Alshahrani & Abdulrahman Alrobaian & Abdulrajak Buradi & Sher Afghan Khan, 2021. "Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms," Energies, MDPI, vol. 14(21), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:170:y:2021:i:c:p:620-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.