IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v82y2015icp697-704.html
   My bibliography  Save this article

Appraisal of soft computing methods for short term consumers' heat load prediction in district heating systems

Author

Listed:
  • Protić, Milan
  • Shamshirband, Shahaboddin
  • Anisi, Mohammad Hossein
  • Petković, Dalibor
  • Mitić, Dragan
  • Raos, Miomir
  • Arif, Muhammad
  • Alam, Khubaib Amjad

Abstract

District heating systems can play a significant role in achieving stringent targets for CO2 emissions with concurrent increase in fuel efficiency. However, there are numerous possibilities for future improvement of their operation. One of the potential domains is control, where short-term prediction of heat load can play a significant role. With reliable prediction of consumers' heat consumption, production could be altered to match the real consumers' needs. This will have an effect on lowering the distribution cost, heat losses, and especially primary and secondary return temperatures, which will consequently result in increased overall efficiency of district heating systems. This paper compares the accuracy of different predictive models of individual consumers in district heating systems. For that purpose, we designed and tested numerous models based on the SVR (support vector regression) with a polynomial (SVR–POLY) and a radial basis function (SVR–RBF) as the kernel functions, with different set of input variables and for four prediction horizons. Model building and testing was performed using experimentally obtained data from one heating substation. The results were compared using the RMSE (root-mean-square error) and the coefficient of determination (R2). The prediction results of SVR–POLY models outperformed the results of SVR–RBF models for all prediction horizons and all sampling intervals. Moreover, the SVR–POLY demonstrated high generalization ability, so we propose that it should be used as a reliable tool for the prediction of consumers' heat load in DHS (district heating systems).

Suggested Citation

  • Protić, Milan & Shamshirband, Shahaboddin & Anisi, Mohammad Hossein & Petković, Dalibor & Mitić, Dragan & Raos, Miomir & Arif, Muhammad & Alam, Khubaib Amjad, 2015. "Appraisal of soft computing methods for short term consumers' heat load prediction in district heating systems," Energy, Elsevier, vol. 82(C), pages 697-704.
  • Handle: RePEc:eee:energy:v:82:y:2015:i:c:p:697-704
    DOI: 10.1016/j.energy.2015.01.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215001036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dotzauer, Erik, 2002. "Simple model for prediction of loads in district-heating systems," Applied Energy, Elsevier, vol. 73(3-4), pages 277-284, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Jihao & Wang, Jin & Qi, Chengying & Min, Chunhua & Sundén, Bengt, 2018. "Medium-term heat load prediction for an existing residential building based on a wireless on-off control system," Energy, Elsevier, vol. 152(C), pages 709-718.
    2. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
    3. Xu, Lei & Hou, Lei & Zhu, Zhenyu & Li, Yu & Liu, Jiaquan & Lei, Ting & Wu, Xingguang, 2021. "Mid-term prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm," Energy, Elsevier, vol. 222(C).
    4. Yuan, Jianjuan & Wang, Chendong & Zhou, Zhihua, 2019. "Study on refined control and prediction model of district heating station based on support vector machine," Energy, Elsevier, vol. 189(C).
    5. Vogler–Finck, P.J.C. & Bacher, P. & Madsen, H., 2017. "Online short-term forecast of greenhouse heat load using a weather forecast service," Applied Energy, Elsevier, vol. 205(C), pages 1298-1310.
    6. Huang, Ke & Yuan, Jianjuan & Zhou, Zhihua & Zheng, Xuejing, 2022. "Analysis and evaluation of heat source data of large-scale heating system based on descriptive data mining techniques," Energy, Elsevier, vol. 251(C).
    7. Sun, Chunhua & Liu, Yanan & Gao, Xiaoyu & Wang, Jinda & Yang, Lan & Qi, Chengyong, 2022. "Research on control strategy integrated with characteristics of user's energy-saving behavior of district heating system," Energy, Elsevier, vol. 245(C).
    8. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    9. Sholahudin, S. & Han, Hwataik, 2016. "Simplified dynamic neural network model to predict heating load of a building using Taguchi method," Energy, Elsevier, vol. 115(P3), pages 1672-1678.
    10. Ahn, Jonghoon & Chung, Dae Hun & Cho, Soolyeon, 2018. "Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model," Energy, Elsevier, vol. 151(C), pages 11-25.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    2. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
    3. Talebi, Behrang & Haghighat, Fariborz & Tuohy, Paul & Mirzaei, Parham A., 2018. "Validation of a community district energy system model using field measured data," Energy, Elsevier, vol. 144(C), pages 694-706.
    4. Eriksson, Anders & Eliasson, Lars & Sikanen, Lauri & Hansson, Per-Anders & Jirjis, Raida, 2017. "Evaluation of delivery strategies for forest fuels applying a model for Weather-driven Analysis of Forest Fuel Systems (WAFFS)," Applied Energy, Elsevier, vol. 188(C), pages 420-430.
    5. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    6. Jae-Ki Byun & Young-Don Choi & Jong-Keun Shin & Myung-Ho Park & Dong-Kurl Kwak, 2012. "Study on the Development of an Optimal Heat Supply Control Algorithm for Group Energy Apartment Buildings According to the Variation of Outdoor Air Temperature," Energies, MDPI, vol. 5(5), pages 1-19, May.
    7. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    8. Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
    9. Yuan, Jianjuan & Zhou, Zhihua & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei, 2021. "Analysis and evaluation of the operation data for achieving an on-demand heating consumption prediction model of district heating substation," Energy, Elsevier, vol. 214(C).
    10. Eliasson, Lars & Eriksson, Anders & Mohtashami, Sima, 2017. "Analysis of factors affecting productivity and costs for a high-performance chip supply system," Applied Energy, Elsevier, vol. 185(P1), pages 497-505.
    11. Maciej Bujalski & Paweł Madejski, 2021. "Forecasting of Heat Production in Combined Heat and Power Plants Using Generalized Additive Models," Energies, MDPI, vol. 14(8), pages 1-15, April.
    12. Zhong, Wei & Feng, Encheng & Lin, Xiaojie & Xie, Jinfang, 2022. "Research on data-driven operation control of secondary loop of district heating system," Energy, Elsevier, vol. 239(PB).
    13. Michael-Allan Millar & Neil M. Burnside & Zhibin Yu, 2019. "District Heating Challenges for the UK," Energies, MDPI, vol. 12(2), pages 1-21, January.
    14. Daniilidis, Alexandros & Scholten, Tjardo & Hooghiem, Joram & De Persis, Claudio & Herber, Rien, 2017. "Geochemical implications of production and storage control by coupling a direct-use geothermal system with heat networks," Applied Energy, Elsevier, vol. 204(C), pages 254-270.
    15. Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
    16. Keçebaş, Ali & Alkan, Mehmet Ali & Yabanova, İsmail & Yumurtacı, Mehmet, 2013. "Energetic and economic evaluations of geothermal district heating systems by using ANN," Energy Policy, Elsevier, vol. 56(C), pages 558-567.
    17. Lund, H. & Siupsinskas, G. & Martinaitis, V., 2005. "Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania," Applied Energy, Elsevier, vol. 82(3), pages 214-227, November.
    18. Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
    19. Madlener, Reinhard & Lohaus, Mathias, 2015. "Well Drainage Management in Abandoned Mines: Optimizing Energy Costs and Heat Use Under Uncertainty," FCN Working Papers 12/2015, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jul 2020.
    20. Difs, Kristina & Bennstam, Marcus & Trygg, Louise & Nordenstam, Lena, 2010. "Energy conservation measures in buildings heated by district heating – A local energy system perspective," Energy, Elsevier, vol. 35(8), pages 3194-3203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:82:y:2015:i:c:p:697-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.