IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v230y2021ics0360544221010331.html
   My bibliography  Save this article

Development of thermo-electrical model of photovoltaic panel under hot-spot conditions with experimental validation

Author

Listed:
  • Čabo, Filip Grubišić
  • Marinić-Kragić, Ivo
  • Garma, Tonko
  • Nižetić, Sandro

Abstract

This work was focused on development of thermo-electrical numerical model for circumstance of free-standing photovoltaic (PV) panel exposed to hot-spot effect. The model was developed for partial hot-spot situation and for serial cell connection. The developed 3D model uses a novel approach via two-way coupling of thermal and electrical models. The model was experimentally validated for geographical location of Mediterranean climate, using the readings from temperature sensors, as well as thermal imaging data. The comparison of results between measured and simulated values were shown to be well matched, with deviation not more than 1.5 °C. The model could be useful for optimization of the bypass diodes and better understanding of hot-spot coupled with other thermal effects. Also, the model can be used for examinations in the case of building integrated photovoltaics (BIPV), since hot-spot effects could be utilized as additional heat sources that could be properly managed. The effect of temperature non-uniformity could be also examined with herein proposed modelling approach and which is beneficial in the case of cooled PV panels.

Suggested Citation

  • Čabo, Filip Grubišić & Marinić-Kragić, Ivo & Garma, Tonko & Nižetić, Sandro, 2021. "Development of thermo-electrical model of photovoltaic panel under hot-spot conditions with experimental validation," Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221010331
    DOI: 10.1016/j.energy.2021.120785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221010331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deshkar, Shubhankar Niranjan & Dhale, Sumedh Bhaskar & Mukherjee, Jishnu Shekar & Babu, T. Sudhakar & Rajasekar, N., 2015. "Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 102-110.
    2. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    3. Nižetić, S. & Grubišić- Čabo, F. & Marinić-Kragić, I. & Papadopoulos, A.M., 2016. "Experimental and numerical investigation of a backside convective cooling mechanism on photovoltaic panels," Energy, Elsevier, vol. 111(C), pages 211-225.
    4. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Chong, Benjamin & Zhang, Li, 2017. "Seven indicators variations for multiple PV array configurations under partial shading and faulty PV conditions," Renewable Energy, Elsevier, vol. 113(C), pages 438-460.
    5. Li, Qingxiang & Zhu, Li & Sun, Yong & Lu, Lin & Yang, Yang, 2020. "Performance prediction of Building Integrated Photovoltaics under no-shading, shading and masking conditions using a multi-physics model," Energy, Elsevier, vol. 213(C).
    6. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    7. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    8. Prasanth Ram, J. & Rajasekar, N., 2017. "A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC)," Energy, Elsevier, vol. 118(C), pages 512-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xun & Li, Ming & Peng, Ye & Sun, Linyao & Chen, Chuangye, 2022. "Development of thermo–electrical loss model for photovoltaic module with inhomogeneous temperature," Energy, Elsevier, vol. 248(C).
    2. Elminshawy, Nabil A.S. & El-Damhogi, D.G. & Ibrahim, I.A. & Elminshawy, Ahmed & Osama, Amr, 2022. "Assessment of floating photovoltaic productivity with fins-assisted passive cooling," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Luis D. Murillo-Soto & Carlos Meza, 2021. "Automated Fault Management System in a Photovoltaic Array: A Reconfiguration-Based Approach," Energies, MDPI, vol. 14(9), pages 1-19, April.
    3. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    4. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    5. Ali M. Eltamaly & Hassan M. H. Farh & Mamdooh S. Al Saud, 2019. "Impact of PSO Reinitialization on the Accuracy of Dynamic Global Maximum Power Detection of Variant Partially Shaded PV Systems," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    6. Fahd A. Alturki & Abdullrahman A. Al-Shamma’a & Hassan M. H. Farh, 2020. "Simulations and dSPACE Real-Time Implementation of Photovoltaic Global Maximum Power Extraction under Partial Shading," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    7. Yadav, Anurag Singh & Mukherjee, V., 2022. "Comprehensive investigation of various bypass diode associations for killer-SuDoKu PV array under several shading conditions," Energy, Elsevier, vol. 239(PB).
    8. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Yan, Ke & Kirtley, James, 2020. "Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling," Applied Energy, Elsevier, vol. 268(C).
    9. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    10. Pillai, Dhanup S. & Rajasekar, N., 2018. "A comprehensive review on protection challenges and fault diagnosis in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 18-40.
    11. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    12. Aljafari, Belqasem & Satpathy, Priya Ranjan & Thanikanti, Sudhakar Babu, 2022. "Partial shading mitigation in PV arrays through dragonfly algorithm based dynamic reconfiguration," Energy, Elsevier, vol. 257(C).
    13. K.T., Swetha & Reddy, B. Venugopal, 2024. "An effective dual-objective optimization to enhance power generation in a two-stage grid-tied PV system under partial shading conditions," Energy, Elsevier, vol. 305(C).
    14. Yadav, Vinod Kumar & Behera, Anwesh Devratna & Singh, Ranjeet & Maheshwari, Anubhav & Ghosh, Santosh & Prakash, Abhijeet, 2023. "A novel PV array reconfiguration technique based on circular array data structure," Energy, Elsevier, vol. 283(C).
    15. Tian, Xinyi & Wang, Jun & Yuan, Shuang & Ji, Jie & Ke, Wei & Wang, Chuyao, 2023. "Investigation on the electrical performance of a curved PV roof integrated with CIGS cells for traditional Chinese houses," Energy, Elsevier, vol. 263(PC).
    16. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).
    17. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    18. Zhang, Minhui & Zhang, Qin & Zhou, Dequn & Wang, Lei, 2021. "Punishment or reward? Strategies of stakeholders in the quality of photovoltaic plants based on evolutionary game analysis in China," Energy, Elsevier, vol. 220(C).
    19. Astitva Kumar & Mohammad Rizwan & Uma Nangia & Muhannad Alaraj, 2021. "Grey Wolf Optimizer-Based Array Reconfiguration to Enhance Power Production from Solar Photovoltaic Plants under Different Scenarios," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    20. Anis Idir & Maxime Perier-Muzet & David Aymé-Perrot & Driss Stitou, 2022. "Thermodynamic Optimization of Electrical and Thermal Energy Production of PV Panels and Potential for Valorization of the PV Low-Grade Thermal Energy into Cold," Energies, MDPI, vol. 15(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221010331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.