IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v93y2018icp121-144.html
   My bibliography  Save this article

A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling

Author

Listed:
  • Priya, K.
  • Sathishkumar, K.
  • Rajasekar, N.

Abstract

The widespread use of Proton Exchange Membrane fuel cell for its unique advantages compelled researchers for precise modelling of its characteristics. Since, modelling becomes extremely important for better understanding, simulation, design, analysis and development of high efficiency fuel cell system. However, due to its non-linearity, multivariate and strongly coupled characteristics; mathematical modelling based on empirical equations was widely adopted. But, the shortage of data, complexity in modelling, and number of unknown parameters favored the use of optimization methods. Many optimization methods have been endeavored to model Proton Exchange Membrane fuel cell characteristics. However, no prior attempt has been made to consolidate the contributions. Hence, this paper comprehensively describes and discusses the various Artificial Intelligence/bio inspired methods applied for fuel cell parameter estimation problem. The methods background theory and its application to the problem is elaborated. It is envisioned that, this review will be a one stop solution to the researchers and engineers working in the area of fuel cell systems.

Suggested Citation

  • Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
  • Handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:121-144
    DOI: 10.1016/j.rser.2018.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118303642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali, M. & El-Hameed, M.A. & Farahat, M.A., 2017. "Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer," Renewable Energy, Elsevier, vol. 111(C), pages 455-462.
    2. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    3. Salim, Reem & Nabag, Mahmoud & Noura, Hassan & Fardoun, Abbas, 2015. "The parameter identification of the Nexa 1.2 kW PEMFC's model using particle swarm optimization," Renewable Energy, Elsevier, vol. 82(C), pages 26-34.
    4. Chakraborty, Uday K. & Abbott, Travis E. & Das, Sajal K., 2012. "PEM fuel cell modeling using differential evolution," Energy, Elsevier, vol. 40(1), pages 387-399.
    5. Ram, J. Prasanth & Manghani, Himanshu & Pillai, Dhanup S. & Babu, T. Sudhakar & Miyatake, Masafumi & Rajasekar, N., 2018. "Analysis on solar PV emulators: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 149-160.
    6. Djilali, N., 2007. "Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities," Energy, Elsevier, vol. 32(4), pages 269-280.
    7. Yang, Shipin & Chellali, Ryad & Lu, Xiaohua & Li, Lijuan & Bo, Cuimei, 2016. "Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm," Energy, Elsevier, vol. 109(C), pages 569-577.
    8. Gong, Wenyin & Yan, Xuesong & Liu, Xiaobo & Cai, Zhihua, 2015. "Parameter extraction of different fuel cell models with transferred adaptive differential evolution," Energy, Elsevier, vol. 86(C), pages 139-151.
    9. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
    10. Sun, Zhe & Wang, Ning & Bi, Yunrui & Srinivasan, Dipti, 2015. "Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm," Energy, Elsevier, vol. 90(P2), pages 1334-1341.
    11. Gong, Wenyin & Cai, Zhihua, 2013. "Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution," Energy, Elsevier, vol. 59(C), pages 356-364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    2. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    3. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    4. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    5. Fathy, Ahmed & Rezk, Hegazy, 2018. "Multi-verse optimizer for identifying the optimal parameters of PEMFC model," Energy, Elsevier, vol. 143(C), pages 634-644.
    6. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    7. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    8. H. Eduardo Ariza & Antonio Correcher & Carlos Sánchez & Ángel Pérez-Navarro & Emilio García, 2018. "Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm," Energies, MDPI, vol. 11(8), pages 1-15, August.
    9. Sun, Zhe & Wang, Ning & Bi, Yunrui & Srinivasan, Dipti, 2015. "Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm," Energy, Elsevier, vol. 90(P2), pages 1334-1341.
    10. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Mohammad Ali Abdelkareem & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization to Decide Optimal Parameters of the PEMFC," Energies, MDPI, vol. 16(12), pages 1-16, June.
    11. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    12. Miao, Di & Chen, Wei & Zhao, Wei & Demsas, Tekle, 2020. "Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method," Energy, Elsevier, vol. 193(C).
    13. Mohamed Louzazni & Sameer Al-Dahidi & Marco Mussetta, 2020. "Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique," Sustainability, MDPI, vol. 12(19), pages 1-23, October.
    14. Ahmed M. Agwa & Attia A. El-Fergany & Gamal M. Sarhan, 2019. "Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer," Energies, MDPI, vol. 12(10), pages 1-14, May.
    15. Seleem, Sameh I. & Hasanien, Hany M. & El-Fergany, Attia A., 2021. "Equilibrium optimizer for parameter extraction of a fuel cell dynamic model," Renewable Energy, Elsevier, vol. 169(C), pages 117-128.
    16. Hachana, Oussama & El-Fergany, Attia A., 2022. "Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer," Energy, Elsevier, vol. 250(C).
    17. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    18. Samuel Raafat Fahim & Hany M. Hasanien & Rania A. Turky & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Abdullah M. Noman & Marcos Tostado-Véliz & Francisco Jurado, 2021. "Parameter Identification of Proton Exchange Membrane Fuel Cell Based on Hunger Games Search Algorithm," Energies, MDPI, vol. 14(16), pages 1-21, August.
    19. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    20. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:93:y:2018:i:c:p:121-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.