IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v250y2022ics0360544222007332.html
   My bibliography  Save this article

Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer

Author

Listed:
  • Hachana, Oussama
  • El-Fergany, Attia A.

Abstract

On the bases of meta-heuristic optimizers and experimental datasets, the parameter extraction of the proton exchange membrane fuel cells (PEMFCs) model to reach accurate current/voltage (I/V) curves remain an active research area during these last years. In this paper, an improved hybridized optimizer is developed to accurately estimate the PEMFC model parameters namely artificial bee colony differential evolution optimizer (ABCDE). In the developed ABCDE, the double execution of the mutation strategy allows enhancing the exploitation phase and avoiding to get stuck into the local minima. To assess the proposed ABCDE based parameter's identification, a comparative study with the recently published techniques including shuffled complex evolution, artificial ecosystem-based optimizer, and enhanced Lévy flight bat algorithm is performed using five typical PEMFCs modules. In this context, the reached sum of squared errors (SSE) and the standard deviations (STD) are very competitive among the challenging methodologies. ABCDE reaches the best SSE values within interesting overall STD and CPU run time less than 3e−15 and 0.225 s, respectively, for the five cases under study. It can be confirmed that the cropped SSE values and the STD among other challenging methodologies are very competitive with the best convergence speed. The ABCDE reaches 0.011697781, 2.07916558, 0.85360752, 9.6536060e−02, and 1.42098181379214e−04 for BCS 500W, NedStack PS6, Ballard Mark V, Horizon H-12, and Modular SR-12; respectively. In addition to that, the comparison results indicate that the proposed ABCDE is successfully utilized to characterize the PEMFC's model reliably and rapidly.

Suggested Citation

  • Hachana, Oussama & El-Fergany, Attia A., 2022. "Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer," Energy, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007332
    DOI: 10.1016/j.energy.2022.123830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222007332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhe & Cao, Dan & Ling, Yawen & Xiang, Feng & Sun, Zhixin & Wu, Fan, 2021. "Proton exchange membrane fuel cell model parameter identification based on dynamic differential evolution with collective guidance factor algorithm," Energy, Elsevier, vol. 216(C).
    2. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    3. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    4. Fathy, Ahmed & Elaziz, Mohamed Abd & Alharbi, Abdullah G., 2020. "A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell," Renewable Energy, Elsevier, vol. 146(C), pages 1833-1845.
    5. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    6. Abdel-Basset, Mohamed & Mohamed, Reda & El-Fergany, Attia & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: A comprehensive analysis," Energy, Elsevier, vol. 233(C).
    7. Chakraborty, Uday K. & Abbott, Travis E. & Das, Sajal K., 2012. "PEM fuel cell modeling using differential evolution," Energy, Elsevier, vol. 40(1), pages 387-399.
    8. Fathy, Ahmed & Rezk, Hegazy & Mohamed Ramadan, Haitham Saad, 2020. "Recent moth-flame optimizer for enhanced solid oxide fuel cell output power via optimal parameters extraction process," Energy, Elsevier, vol. 207(C).
    9. Ahmed M. Agwa & Attia A. El-Fergany & Gamal M. Sarhan, 2019. "Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer," Energies, MDPI, vol. 12(10), pages 1-14, May.
    10. Sun, Zhe & Wang, Ning & Bi, Yunrui & Srinivasan, Dipti, 2015. "Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm," Energy, Elsevier, vol. 90(P2), pages 1334-1341.
    11. Ali, M. & El-Hameed, M.A. & Farahat, M.A., 2017. "Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer," Renewable Energy, Elsevier, vol. 111(C), pages 455-462.
    12. El-Hay, Enas A. & El-Hameed, Mohamed A. & El-Fergany, Attia A., 2018. "Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor," Energy, Elsevier, vol. 163(C), pages 699-711.
    13. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    14. El-Fergany, Attia A., 2018. "Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer," Renewable Energy, Elsevier, vol. 119(C), pages 641-648.
    15. Miao, Tianwei & Tongsh, Chasen & Wang, Jianan & Cheng, Peng & Liang, Jinqiao & Wang, Zixuan & Chen, Wenmiao & Zhang, Chao & Xi, Fuqiang & Du, Qing & Wang, Bowen & Bai, Fuqiang & Jiao, Kui, 2022. "Current density and temperature distribution measurement and homogeneity analysis for a large-area proton exchange membrane fuel cell," Energy, Elsevier, vol. 239(PA).
    16. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Fan & Li, Yuehua & Chen, Dongfang & Hu, Song & Xu, Xiaoming, 2024. "Parameter identification of PEMFC steady-state model based on p-dimensional extremum seeking via simplex tuning optimization method," Energy, Elsevier, vol. 292(C).
    2. Wilberforce, Tabbi & Rezk, Hegazy & Olabi, A.G. & Epelle, Emmanuel I. & Abdelkareem, Mohammad Ali, 2023. "Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms," Energy, Elsevier, vol. 262(PB).
    3. Rabeh Abbassi & Salem Saidi & Abdelkader Abbassi & Houssem Jerbi & Mourad Kchaou & Bilal Naji Alhasnawi, 2023. "Accurate Key Parameters Estimation of PEMFCs’ Models Based on Dandelion Optimization Algorithm," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    4. Hassan Ali, Hossam & Fathy, Ahmed, 2024. "Reliable exponential distribution optimizer-based methodology for modeling proton exchange membrane fuel cells at different conditions," Energy, Elsevier, vol. 292(C).
    5. Ahmed Fathy & Abdulmohsen Alanazi, 2023. "An Efficient White Shark Optimizer for Enhancing the Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    6. Abdel-Basset, Mohamed & Mohamed, Reda & Abouhawwash, Mohamed, 2023. "On the facile and accurate determination of the highly accurate recent methods to optimize the parameters of different fuel cells: Simulations and analysis," Energy, Elsevier, vol. 272(C).
    7. Zhang, Bo & Wang, Rongjie & Jiang, Desong & Wang, Yichun & lin, Anhui & Wang, Jianfeng & Ruan, Bingcong, 2023. "Parameter identification of proton exchange membrane fuel cell based on swarm intelligence algorithm," Energy, Elsevier, vol. 283(C).
    8. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    9. Abel Rubio & Wilton Agila & Leandro González & Jonathan Aviles-Cedeno, 2023. "Distributed Intelligence in Autonomous PEM Fuel Cell Control," Energies, MDPI, vol. 16(12), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    2. Mohamed Louzazni & Sameer Al-Dahidi & Marco Mussetta, 2020. "Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique," Sustainability, MDPI, vol. 12(19), pages 1-23, October.
    3. Seleem, Sameh I. & Hasanien, Hany M. & El-Fergany, Attia A., 2021. "Equilibrium optimizer for parameter extraction of a fuel cell dynamic model," Renewable Energy, Elsevier, vol. 169(C), pages 117-128.
    4. Yang, Fan & Li, Yuehua & Chen, Dongfang & Hu, Song & Xu, Xiaoming, 2024. "Parameter identification of PEMFC steady-state model based on p-dimensional extremum seeking via simplex tuning optimization method," Energy, Elsevier, vol. 292(C).
    5. Samuel Raafat Fahim & Hany M. Hasanien & Rania A. Turky & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Abdullah M. Noman & Marcos Tostado-Véliz & Francisco Jurado, 2021. "Parameter Identification of Proton Exchange Membrane Fuel Cell Based on Hunger Games Search Algorithm," Energies, MDPI, vol. 14(16), pages 1-21, August.
    6. Andrew J. Riad & Hany M. Hasanien & Rania A. Turky & Ahmed H. Yakout, 2023. "Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    7. Abdel-Basset, Mohamed & Mohamed, Reda & El-Fergany, Attia & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: A comprehensive analysis," Energy, Elsevier, vol. 233(C).
    8. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    9. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    10. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    11. Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).
    12. Abdel-Basset, Mohamed & Mohamed, Reda & Abouhawwash, Mohamed, 2023. "On the facile and accurate determination of the highly accurate recent methods to optimize the parameters of different fuel cells: Simulations and analysis," Energy, Elsevier, vol. 272(C).
    13. Hasanien, Hany M. & Shaheen, Mohamed A.M. & Turky, Rania A. & Qais, Mohammed H. & Alghuwainem, Saad & Kamel, Salah & Tostado-Véliz, Marcos & Jurado, Francisco, 2022. "Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm," Energy, Elsevier, vol. 247(C).
    14. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    15. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Mohammad Ali Abdelkareem & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization to Decide Optimal Parameters of the PEMFC," Energies, MDPI, vol. 16(12), pages 1-16, June.
    16. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    17. Ibrahim Alsaidan & Mohamed A. M. Shaheen & Hany M. Hasanien & Muhannad Alaraj & Abrar S. Alnafisah, 2021. "Proton Exchange Membrane Fuel Cells Modeling Using Chaos Game Optimization Technique," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    18. Alaa A. Zaky & Rania M. Ghoniem & F. Selim, 2023. "Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    19. Miao, Di & Chen, Wei & Zhao, Wei & Demsas, Tekle, 2020. "Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method," Energy, Elsevier, vol. 193(C).
    20. Hassan Ali, Hossam & Fathy, Ahmed, 2024. "Reliable exponential distribution optimizer-based methodology for modeling proton exchange membrane fuel cells at different conditions," Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.