IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics0360544222003474.html
   My bibliography  Save this article

Thermo-electrical performance assessment of a partially submerged floating photovoltaic system

Author

Listed:
  • Elminshawy, Nabil A.S.
  • Osama, Amr
  • Saif, Amany M.
  • Tina, Giuseppe Marco

Abstract

The floating photovoltaic (FPV) is characterized by the possibility to keep the PV cell at a reduced temperature compared to Land-Based Photovoltaic (LBPV) but this reduction is not so large. However, in hot climate, the working temperature of the FPV could rise enough to act negatively on the productivity. The present article focuses on assessing the performance of a partially submerged photovoltaic (PSPV) system planned to be deployed over Egypt's northern lakes. The PSPV is a new modification of the FPV system that was experimentally investigated under the Egyptian weather conditions in the present study. The above PSPV module was tested with various submerged ratios (y) of 5, 10, and 20%, defined as the ratio of the submerged portion to the module's length. It was concluded that the average surface temperatures of the PSPV module were lower than those of the reference LBPV module. By reducing the working temperature of the PSPV module at (y = 10%) by 11.10%, a power gain of 18.20% over the LBPV module was achieved. The cost per unit of produced electricity (LCOE) for the PSPV module was reduced by 7.52%, from 0.063 to 0.059 ($/kWh), by raising the submerged ratio from 5% to 10%.

Suggested Citation

  • Elminshawy, Nabil A.S. & Osama, Amr & Saif, Amany M. & Tina, Giuseppe Marco, 2022. "Thermo-electrical performance assessment of a partially submerged floating photovoltaic system," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003474
    DOI: 10.1016/j.energy.2022.123444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cazzaniga, R. & Cicu, M. & Rosa-Clot, M. & Rosa-Clot, P. & Tina, G.M. & Ventura, C., 2018. "Floating photovoltaic plants: Performance analysis and design solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1730-1741.
    2. Amr, Ayman Abdel-raheim & Hassan, A.A.M. & Abdel-Salam, Mazen & El-Sayed, AbouHashema M., 2019. "Enhancement of photovoltaic system performance via passive cooling: Theory versus experiment," Renewable Energy, Elsevier, vol. 140(C), pages 88-103.
    3. Wang, R.Z. & Zhai, X.Q., 2010. "Development of solar thermal technologies in China," Energy, Elsevier, vol. 35(11), pages 4407-4416.
    4. Tina, G.M. & Rosa-Clot, M. & Rosa-Clot, P. & Scandura, P.F., 2012. "Optical and thermal behavior of submerged photovoltaic solar panel: SP2," Energy, Elsevier, vol. 39(1), pages 17-26.
    5. Sahu, Alok & Yadav, Neha & Sudhakar, K., 2016. "Floating photovoltaic power plant: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 815-824.
    6. Rajput, Pramod & Tiwari, G.N. & Sastry, O.S., 2017. "Thermal modelling with experimental validation and economic analysis of mono crystalline silicon photovoltaic module on the basis of degradation study," Energy, Elsevier, vol. 120(C), pages 731-739.
    7. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    8. Ozden, Talat & Carr, Anna J. & Geerligs, Bart (L.J.) & Turan, Rasit & Akinoglu, Bulent G., 2020. "One-year performance evaluation of two newly developed back-contact solar modules in two different climates," Renewable Energy, Elsevier, vol. 145(C), pages 557-568.
    9. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    11. Rosa-Clot, M. & Rosa-Clot, P. & Tina, G.M. & Scandura, P.F., 2010. "Submerged photovoltaic solar panel: SP2," Renewable Energy, Elsevier, vol. 35(8), pages 1862-1865.
    12. Elminshawy, Nabil A.S. & Gadalla, Mamdouh A. & Bassyouni, M. & El-Nahhas, Kamal & Elminshawy, Ahmed & Elhenawy, Y., 2020. "A novel concentrated photovoltaic-driven membrane distillation hybrid system for the simultaneous production of electricity and potable water," Renewable Energy, Elsevier, vol. 162(C), pages 802-817.
    13. Wang, Zhifeng, 2010. "Prospectives for China's solar thermal power technology development," Energy, Elsevier, vol. 35(11), pages 4417-4420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Choi, Seok Min & Park, Chang-Dae & Cho, Sung-Hoon & Lim, Byung-Ju, 2022. "Effects of wind loads on the solar panel array of a floating photovoltaic system – Experimental study and economic analysis," Energy, Elsevier, vol. 256(C).
    3. Aboshosha, Ashraf & Hamad, Hisham A., 2024. "Computer Aided Design and Simulation based development of floating solar resort," Energy, Elsevier, vol. 294(C).
    4. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    5. Ghandehariun, Samane & Ghandehariun, Amir M. & Ziabari, Nima Bahrami, 2023. "Performance prediction and optimization of a hybrid renewable-energy-based multigeneration system using machine learning," Energy, Elsevier, vol. 282(C).
    6. Elminshawy, Nabil A.S. & El-Damhogi, D.G. & Ibrahim, I.A. & Elminshawy, Ahmed & Osama, Amr, 2022. "Assessment of floating photovoltaic productivity with fins-assisted passive cooling," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Chen, Yi-Chieh & Dy, Kenneth Bicol & Chang, Ching-Cheng & Hsu, Shih-Hsun, 2024. "Property rights arrangement and stakeholder networks hindering floating photovoltaics: A case of private open-access ponds in Taiwan," Energy Policy, Elsevier, vol. 184(C).
    3. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    5. Wang, Dengjia & Mo, Zhelong & Liu, Yanfeng & Ren, Yuchao & Fan, Jianhua, 2022. "Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China," Energy, Elsevier, vol. 238(PC).
    6. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Yang, Li & He, Bao-jie & Ye, Miao, 2014. "The application of solar technologies in building energy efficiency: BISE design in solar-powered residential buildings," Technology in Society, Elsevier, vol. 38(C), pages 111-118.
    8. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    9. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    10. Exley, G. & Hernandez, R.R. & Page, T. & Chipps, M. & Gambro, S. & Hersey, M. & Lake, R. & Zoannou, K.-S. & Armstrong, A., 2021. "Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    12. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.
    13. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    14. Yasir Alsaedi & Gurudeo Anand Tularam & Victor Wong, 2021. "Impact of the Nature of Energy Management and Responses to Policies Regarding Solar and Wind Pricing: A Qualitative Study of the Australian Electricity Markets," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 191-205.
    15. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
    16. Jangwon Suh & Yonghae Jang & Yosoon Choi, 2019. "Comparison of Electric Power Output Observed and Estimated from Floating Photovoltaic Systems: A Case Study on the Hapcheon Dam, Korea," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    17. Julien Chevallier, 2013. "At the crossroads: can China grow in a low-carbon way?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 31, pages 666-681, Edward Elgar Publishing.
    18. Sulaeman, Samer & Brown, Erik & Quispe-Abad, Raul & Müller, Norbert, 2021. "Floating PV system as an alternative pathway to the amazon dam underproduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Ansorena Ruiz, R. & de Vilder, L.H. & Prasasti, E.B. & Aouad, M. & De Luca, A. & Geisseler, B. & Terheiden, K. & Scanu, S. & Miccoli, A. & Roeber, V. & Marence, M. & Moll, R. & Bricker, J.D. & Goseber, 2022. "Low-head pumped hydro storage: A review on civil structure designs, legal and environmental aspects to make its realization feasible in seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Dai, Jian & Zhang, Chi & Lim, Han Vincent & Ang, Kok Keng & Qian, Xudong & Wong, Johnny Liang Heng & Tan, Sze Tiong & Wang, Chien Looi, 2020. "Design and construction of floating modular photovoltaic system for water reservoirs," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.