IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp557-568.html
   My bibliography  Save this article

One-year performance evaluation of two newly developed back-contact solar modules in two different climates

Author

Listed:
  • Ozden, Talat
  • Carr, Anna J.
  • Geerligs, Bart (L.J.)
  • Turan, Rasit
  • Akinoglu, Bulent G.

Abstract

To a certain extent, the photovoltaics industry is well developed, and the performance and expected yield of standard photovoltaic modules are well documented and researched. However, newer more efficient photovoltaic cell and module technologies are being developed all over the world. Outdoor testing of new photovoltaic technologies is very important to understand and validate their reliability and performance under different environmental conditions. For the first time, one year of monitored performance data is presented and analyzed for two high efficiencies interdigitated back contact prototype mini-modules at different locations, having different climates. The test results of a commercial heterojunction with intrinsic thin-layer” module are also presented for comparison. The results showed that the two mini-modules remained stable for the duration of the test period, and showed no signs of degradation. They did perform significantly differently due to the different climatic conditions. The results also show that the combination of ambient temperature difference together with relative humidity impacts the performance of the modules. Calculated outdoor yearly efficiencies are 19.05% and 18.36% for two integrated back contact mini-modules tested in Petten-Netherland and Ankara-Turkey, respectively. The temperature coefficients of the modules are also calculated and compared with two commercial photovoltaic modules.

Suggested Citation

  • Ozden, Talat & Carr, Anna J. & Geerligs, Bart (L.J.) & Turan, Rasit & Akinoglu, Bulent G., 2020. "One-year performance evaluation of two newly developed back-contact solar modules in two different climates," Renewable Energy, Elsevier, vol. 145(C), pages 557-568.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:557-568
    DOI: 10.1016/j.renene.2019.06.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elminshawy, Nabil A.S. & Osama, Amr & Saif, Amany M. & Tina, Giuseppe Marco, 2022. "Thermo-electrical performance assessment of a partially submerged floating photovoltaic system," Energy, Elsevier, vol. 246(C).
    2. Kristina Kilikevičienė & Jonas Matijošius & Artūras Kilikevičius & Mindaugas Jurevičius & Vytautas Makarskas & Jacek Caban & Andrzej Marczuk, 2019. "Research of the Energy Losses of Photovoltaic (PV) Modules after Hail Simulation Using a Newly-Created Testbed," Energies, MDPI, vol. 12(23), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:557-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.