IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v120y2017icp731-739.html
   My bibliography  Save this article

Thermal modelling with experimental validation and economic analysis of mono crystalline silicon photovoltaic module on the basis of degradation study

Author

Listed:
  • Rajput, Pramod
  • Tiwari, G.N.
  • Sastry, O.S.

Abstract

In this paper, a mathematical model has been developed to calculate solar cell temperature and module efficiency in opaque mono crystalline silicon (sc-Si) PV module on the basis of degradation rate. The calculated results have been validated by experimental investigations for the opaque PV module. Module efficiency and solar cell temperature of the opaque PV module decrease with increase in degradation rate. In this context, energy matrices are developed and enviroeconomic analysis has been done on the basis of annual energy output of PV modules for different degradation rate. Efficiency and temperature of PV module have been decreasing with an increase in the degradation rate. The energy payback time is found to be 8.80 years and 9.29 years for degradation rate 0.3%/year and 0.9%/year, respectively and unit cost (Rs./kWh) increase with an increase in the degradation rate of PV module. Similarly, the environmental cost reduction is higher for 0.3%/year degradation rate and lower for 0.9%/year degradation rate.

Suggested Citation

  • Rajput, Pramod & Tiwari, G.N. & Sastry, O.S., 2017. "Thermal modelling with experimental validation and economic analysis of mono crystalline silicon photovoltaic module on the basis of degradation study," Energy, Elsevier, vol. 120(C), pages 731-739.
  • Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:731-739
    DOI: 10.1016/j.energy.2016.11.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216317789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Vikrant & Kumar, Arun & Sastry, O.S. & Chandel, S.S., 2013. "Performance assessment of different solar photovoltaic technologies under similar outdoor conditions," Energy, Elsevier, vol. 58(C), pages 511-518.
    2. Tiwari, Arvind & Barnwal, P. & Sandhu, G.S. & Sodha, M.S., 2009. "Energy metrics analysis of hybrid - photovoltaic (PV) modules," Applied Energy, Elsevier, vol. 86(12), pages 2615-2625, December.
    3. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    4. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    5. Chandel, S.S. & Nagaraju Naik, M. & Sharma, Vikrant & Chandel, Rahul, 2015. "Degradation analysis of 28 year field exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India," Renewable Energy, Elsevier, vol. 78(C), pages 193-202.
    6. Alsema, E. A. & Nieuwlaar, E., 2000. "Energy viability of photovoltaic systems," Energy Policy, Elsevier, vol. 28(14), pages 999-1010, November.
    7. Kichou, Sofiane & Silvestre, Santiago & Nofuentes, Gustavo & Torres-Ramírez, Miguel & Chouder, Aissa & Guasch, Daniel, 2016. "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure," Energy, Elsevier, vol. 96(C), pages 231-241.
    8. Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
    9. Sharma, Vikrant & Sastry, O.S. & Kumar, Arun & Bora, Birinchi & Chandel, S.S., 2014. "Degradation analysis of a-Si, (HIT) hetro-junction intrinsic thin layer silicon and m-C-Si solar photovoltaic technologies under outdoor conditions," Energy, Elsevier, vol. 72(C), pages 536-546.
    10. Nawaz, I. & Tiwari, G.N., 2006. "Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level," Energy Policy, Elsevier, vol. 34(17), pages 3144-3152, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Masi, Rosa Francesca & Gigante, Antonio & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2024. "Experimental and numerical approach for the evaluation of PV-system performance on energy and environmental behavior of nearly zero energy buildings: Case study in Mediterranean climate," Renewable Energy, Elsevier, vol. 227(C).
    2. Elminshawy, Nabil A.S. & El-Damhogi, D.G. & Ibrahim, I.A. & Elminshawy, Ahmed & Osama, Amr, 2022. "Assessment of floating photovoltaic productivity with fins-assisted passive cooling," Applied Energy, Elsevier, vol. 325(C).
    3. Sina Herceg & Ismail Kaaya & Julián Ascencio-Vásquez & Marie Fischer & Karl-Anders Weiß & Liselotte Schebek, 2022. "The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    4. Pramod Rajput & Maria Malvoni & Nallapaneni Manoj Kumar & O. S. Sastry & Arunkumar Jayakumar, 2020. "Operational Performance and Degradation Influenced Life Cycle Environmental–Economic Metrics of mc-Si, a-Si and HIT Photovoltaic Arrays in Hot Semi-arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    5. Elminshawy, Nabil A.S. & Osama, Amr & Saif, Amany M. & Tina, Giuseppe Marco, 2022. "Thermo-electrical performance assessment of a partially submerged floating photovoltaic system," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    2. Ravikumar, Dwarakanath & Wender, Ben & Seager, Thomas P. & Fraser, Matthew P. & Tao, Meng, 2017. "A climate rationale for research and development on photovoltaics manufacture," Applied Energy, Elsevier, vol. 189(C), pages 245-256.
    3. Chandel, Rahul & Chandel, Shyam Singh & Malik, Prashant, 2022. "Perspective of new distributed grid connected roof top solar photovoltaic power generation policy interventions in India," Energy Policy, Elsevier, vol. 168(C).
    4. Bouraiou, Ahmed & Hamouda, Messaoud & Chaker, Abdelkader & Lachtar, Salah & Neçaibia, Ammar & Boutasseta, Nadir & Mostefaoui, Mohammed, 2017. "Experimental evaluation of the performance and degradation of single crystalline silicon photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 132(C), pages 22-30.
    5. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    6. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    7. Kichou, Sofiane & Silvestre, Santiago & Nofuentes, Gustavo & Torres-Ramírez, Miguel & Chouder, Aissa & Guasch, Daniel, 2016. "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure," Energy, Elsevier, vol. 96(C), pages 231-241.
    8. Leckner, Mitchell & Zmeureanu, Radu, 2011. "Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem," Applied Energy, Elsevier, vol. 88(1), pages 232-241, January.
    9. Kourkoumpas, Dimitrios-Sotirios & Benekos, Georgios & Nikolopoulos, Nikolaos & Karellas, Sotirios & Grammelis, Panagiotis & Kakaras, Emmanouel, 2018. "A review of key environmental and energy performance indicators for the case of renewable energy systems when integrated with storage solutions," Applied Energy, Elsevier, vol. 231(C), pages 380-398.
    10. Vinay Virupaksha & Mary Harty & Kevin McDonnell, 2019. "Microgeneration of Electricity Using a Solar Photovoltaic System in Ireland," Energies, MDPI, vol. 12(23), pages 1-26, December.
    11. Kumar, Manish & Chandel, S.S. & Kumar, Arun, 2020. "Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions," Energy, Elsevier, vol. 204(C).
    12. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    13. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    14. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    15. Piliougine, Michel & Sánchez-Friera, Paula & Petrone, Giovanni & Sánchez-Pacheco, Francisco José & Spagnuolo, Giovanni & Sidrach-de-Cardona, Mariano, 2022. "New model to study the outdoor degradation of thin–film photovoltaic modules," Renewable Energy, Elsevier, vol. 193(C), pages 857-869.
    16. Cucchiella, Federica & D'Adamo, Idiano, 2012. "Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5245-5259.
    17. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    18. Wong, J.H. & Royapoor, M. & Chan, C.W., 2016. "Review of life cycle analyses and embodied energy requirements of single-crystalline and multi-crystalline silicon photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 608-618.
    19. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    20. McManus, A. & Gaterell, M.R. & Coates, L.E., 2010. "The potential of the Code for Sustainable Homes to deliver genuine 'sustainable energy' in the UK social housing sector," Energy Policy, Elsevier, vol. 38(4), pages 2013-2019, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:120:y:2017:i:c:p:731-739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.