IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223021266.html
   My bibliography  Save this article

Molecular dynamics investigation of thermo-physical properties of molten salt with nanoparticles for solar energy application

Author

Listed:
  • Liu, Jinjin
  • Xiao, Xin

Abstract

Molten salt is an important medium for thermal storage, which is widely used in concentrating solar power plants. The addition of nanomaterials becomes an effective way to overcome the unsatisfactory thermo-physical properties of pure molten salt. In the present study, molecular dynamics simulations are performed to investigate the influence of SiO2 nanoparticle on the thermo-physical properties of solar salt. Two kinds of models of solar salt nanofluids, i.e., different sizes of boxes with the same size of nanoparticles and the same size of boxes with different sizes of nanoparticles, at the mass fractions of nanoparticles of 1%, 2%, 3%, 4%, 5%, and 6% are built to analyze the size effects on the simulation results. The effects of SiO2 nanoparticles on the specific heat capacity, viscosity and thermal conductivity of the composited thermal energy storage (CTES) materials are studied extensively. The microscopic mechanism of the thermo-physical properties variation is revealed by calculating the mean square displacement (MSD), diffusion coefficient, Radial distribution function (RDF) and energy of systems. It is proved that the calculations of shear viscosity, specific heat capacity and MSD do not have size effect. An enhancement as large as 2.05% in the specific heat capacity of the CTES materials has been found with 2 wt% addition of nanoparticles. The presence of the compressed layer on the surface of the nanoparticles might be responsible for the enhancement of the specific heat capacity according to the calculation of RDF. It is also found that with the increase of mass fraction of nanoparticles, the viscosity of the CTES materials increases due to the enhancement of interaction between ions in the base fluid. Therefore, in order to avoid the negative effects caused by excessive viscosity of solar salt in thermal energy storage system, it is suggested to consider the appropriate amount of nanoparticles. The addition of SiO2 nanoparticles enhances the thermal conductivity of the CTES materials with the increase of mass fraction of nanoparticles. It is demonstrated that the enhancement of ion collision frequency in the base fluid is the main factor for the enhancement of thermal conductivity by the addition of SiO2 nanoparticles.

Suggested Citation

  • Liu, Jinjin & Xiao, Xin, 2023. "Molecular dynamics investigation of thermo-physical properties of molten salt with nanoparticles for solar energy application," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223021266
    DOI: 10.1016/j.energy.2023.128732
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223021266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Yinsheng & Zhao, Chenyang & Tao, Yubing & Chen, Xi & He, Ya-Ling, 2021. "Superior thermal energy storage performance of NaCl-SWCNT composite phase change materials: A molecular dynamics approach," Applied Energy, Elsevier, vol. 290(C).
    2. Awad, Afrah & Navarro, Helena & Ding, Yulong & Wen, Dongsheng, 2018. "Thermal-physical properties of nanoparticle-seeded nitrate molten salts," Renewable Energy, Elsevier, vol. 120(C), pages 275-288.
    3. Shahbaz, Muhammad & Nwani, Chinazaekpere & Bekun, Festus Victor & Gyamfi, Bright Akwasi & Agozie, Divine Q., 2022. "Discerning the role of renewable energy and energy efficiency in finding the path to cleaner consumption and production patterns: New insights from developing economies," Energy, Elsevier, vol. 260(C).
    4. Xian, Lei & Chen, Lei & Tian, Heqing & Tao, Wen-Quan, 2022. "Enhanced thermal energy storage performance of molten salt for the next generation concentrated solar power plants by SiO2 nanoparticles: A molecular dynamics study," Applied Energy, Elsevier, vol. 323(C).
    5. Zhao, C.Y. & Tao, Y.B. & Yu, Y.S., 2022. "Thermal conductivity enhancement of phase change material with charged nanoparticle: A molecular dynamics simulation," Energy, Elsevier, vol. 242(C).
    6. Luo, Qingyang & Liu, Xianglei & Wang, Haolei & Xu, Qiao & Tian, Yang & Liang, Ting & Liu, Qibin & Liu, Zhan & Yang, Xiaohu & Xuan, Yimin & Li, Yongliang & Ding, Yulong, 2022. "Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Wang, Yuqi & Wu, Shuang & Bai, Jingru & Sheng, Hongyu & Zhang, Jinghui, 2024. "Al2O3 nanoparticles integration for comprehensive enhancement of eutectic salt thermal performance: Experimental design, molecular dynamics calculations, and system simulation studies," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Qingyang & Liu, Xianglei & Xu, Qiao & Tian, Yang & Yao, Haichen & Wang, Jianguo & Lv, Shushan & Dang, Chunzhuo & Xuan, Yimin, 2023. "Ceramic nanoparticles enhancement of latent heat thermal energy storage properties for LiNO3/NaCl: Evaluation from material to system level," Applied Energy, Elsevier, vol. 331(C).
    2. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Wang, Yuqi & Wu, Shuang & Bai, Jingru & Sheng, Hongyu & Zhang, Jinghui, 2024. "Al2O3 nanoparticles integration for comprehensive enhancement of eutectic salt thermal performance: Experimental design, molecular dynamics calculations, and system simulation studies," Energy, Elsevier, vol. 292(C).
    3. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Bai, Jingru & Cui, Da & Pan, Shuo & Sheng, Hongyu, 2024. "Effect of Al2O3 nanoparticle dispersion on the thermal properties of a eutectic salt for solar power applications: Experimental and molecular simulation studies," Energy, Elsevier, vol. 288(C).
    4. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    5. Saranprabhu, M.K. & Rajan, K.S., 2019. "Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 141(C), pages 451-459.
    6. Wang, Ji-Xiang & Qian, Jian & Wang, Ni & Zhang, He & Cao, Xiang & Liu, Feifan & Hao, Guanqiu, 2023. "A scalable micro-encapsulated phase change material and liquid metal integrated composite for sustainable data center cooling," Renewable Energy, Elsevier, vol. 213(C), pages 75-85.
    7. Ruan, Zhao-Hui & Gao, Peng & Yuan, Yuan & Tan, He-Ping, 2022. "Theoretical estimation of temperature-dependent radiation properties of molten solar salt using molecular dynamics and first principles," Energy, Elsevier, vol. 246(C).
    8. Wang, Qiliang & Yao, Yao & Shen, Yongting & Shen, Zhicheng & Yang, Hongxing, 2024. "A mutually beneficial system incorporating parabolic trough concentrating solar power system with photovoltaics: A comprehensive techno-economic analysis," Applied Energy, Elsevier, vol. 360(C).
    9. Feng, Chao & Liu, Yu-Qi & Yang, Jun, 2024. "Do energy trade patterns affect renewable energy development? The threshold role of digital economy and economic freedom," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    10. Liu, Yilin & Cui, Xin & Yan, Weichao & Wang, Jiawei & Su, Jincai & Jin, Liwen, 2022. "A molecular level based parametric study of transport behavior in different polymer composite membranes for water vapor separation," Applied Energy, Elsevier, vol. 326(C).
    11. Bright Akwasi Gyamfi & Stephen Taiwo Onifade & Elvis Kwame Ofori, 2023. "Synthesizing the impacts of information and communication technology advancement and educational developments on environmental sustainability: A comparative analyses of three economic blocs—BRICS, MIN," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 744-759, April.
    12. Tian, Yang & Liu, Xianglei & Zheng, Hangbin & Xu, Qiao & Zhu, Zhonghui & Luo, Qinyang & Song, Chao & Gao, Ke & Yao, Haichen & Dang, Chunzhuo & Xuan, Yimin, 2022. "Artificial mitochondrion for fast latent heat storage: Experimental study and lattice Boltzmann simulation," Energy, Elsevier, vol. 245(C).
    13. Henryk Dzwigol & Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "The Role of Environmental Regulations, Renewable Energy, and Energy Efficiency in Finding the Path to Green Economic Growth," Energies, MDPI, vol. 16(7), pages 1-18, March.
    14. Han, Dongmei & Guene Lougou, Bachirou & Xu, Yantao & Shuai, Yong & Huang, Xing, 2020. "Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 264(C).
    15. Gangopadhyay, Partha & Das, Narasingha & Alam, G.M. Monirul & Khan, Uzma & Haseeb, Mohammad & Hossain, Md. Emran, 2023. "Revisiting the carbon pollution-inhibiting policies in the USA using the quantile ARDL methodology: What roles can clean energy and globalization play?," Renewable Energy, Elsevier, vol. 204(C), pages 710-721.
    16. Skrbek, Kryštof & Bartůněk, Vilém & Sedmidubský, David, 2022. "Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    17. Chien‐Chiang Lee & Godwin Olasehinde‐Williams & Bright Akwasi Gyamfi, 2023. "The synergistic effect of green trade and economic complexity on sustainable environment: A new perspective on the economic and ecological components of sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 976-989, April.
    18. Svobodova-Sedlackova, Adela & Barreneche, Camila & Alonso, Gerard & Fernandez, A. Inés & Gamallo, Pablo, 2020. "Effect of nanoparticles in molten salts – MD simulations and experimental study," Renewable Energy, Elsevier, vol. 152(C), pages 208-216.
    19. Jia, Shanghui & Chen, Xinhui & Jin, Jiayu, 2024. "Digital disruption and energy efficiency: The impact of regional digitalization on China's industrial sector," Energy, Elsevier, vol. 300(C).
    20. Hu, Kexiang & Chen, Yanyu & Mu, Siying & Tan, Zhixiong, 2024. "Green inclusive leadership, green policy, and pursuit of sustainability in natural resources: A firm-level analysis in context of Ukraine-Russia war," Resources Policy, Elsevier, vol. 89(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223021266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.