IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222002171.html
   My bibliography  Save this article

Effects of operating parameters on in-cylinder flow characteristics of an optically accessible engine with a spray-guided injector

Author

Listed:
  • Kim, Donghwan
  • Son, Yousang
  • Park, Sungwook

Abstract

This study investigated the cycle-to-cycle variation of a spark-assist high-compression-ratio spray-guided direct-injection two-cylinder optically accessible engine. The cycle-to-cycle variation was evaluated by calculating the mean velocity, tumble ratio, tumble center, and effective radius using the PIV measurement results. Under all experimental conditions, the mean velocity continuously decreased owing to the momentum loss from the intake to compression strokes. A low COV was observed within the high-velocity region, and the effective radius decreased as rotational flow formed regardless of the engine operating conditions. As the engine speed increased, owing to the high piston speed, the in-cylinder flow intensified. However, the effective radius and tumble ratio were similar during the compression stroke. As the intake pressure increased from 0.8 to 1.3 bar, the mean velocity and tumble ratio slightly increased. Moreover, the effective radius decreased slightly during the compression stroke. As the IVO timing was retarded, during the intake stroke, the structure of the in-cylinder flow changed dramatically. Rapid momentum dissipation occurred after the intake air inflowed strongly, resulting in relatively weak rotational flow compared to the reference and advanced IVO timing conditions.

Suggested Citation

  • Kim, Donghwan & Son, Yousang & Park, Sungwook, 2022. "Effects of operating parameters on in-cylinder flow characteristics of an optically accessible engine with a spray-guided injector," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222002171
    DOI: 10.1016/j.energy.2022.123314
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222002171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keskinen, Karri & Kaario, Ossi & Nuutinen, Mika & Vuorinen, Ville & Künsch, Zaira & Liavåg, Lars Ola & Larmi, Martti, 2016. "Mixture formation in a direct injection gas engine: Numerical study on nozzle type, injection pressure and injection timing effects," Energy, Elsevier, vol. 94(C), pages 542-556.
    2. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
    3. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.
    4. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
    5. Tripathy, Srinibas & Das, Abhimanyu & Srivastava, Dhananjay Kumar, 2020. "Electro-pneumatic variable valve actuation system for camless engine: Part II-fuel consumption improvement through un-throttled operation," Energy, Elsevier, vol. 193(C).
    6. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    7. Park, Cheolwoong & Kim, Sungdae & Kim, Hongsuk & Moriyoshi, Yasuo, 2012. "Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine," Energy, Elsevier, vol. 41(1), pages 401-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quanfu Lou & Bagh Ali & Saif Ur Rehman & Danial Habib & Sohaib Abdal & Nehad Ali Shah & Jae Dong Chung, 2022. "Micropolar Dusty Fluid: Coriolis Force Effects on Dynamics of MHD Rotating Fluid When Lorentz Force Is Significant," Mathematics, MDPI, vol. 10(15), pages 1-13, July.
    2. Yuji Ikeda, 2022. "The Interaction between In-Cylinder Turbulent Flow and Flame Front Propagation in an Optical SI Engine Measured by High-Speed PIV," Energies, MDPI, vol. 15(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    2. Yew Heng Teoh & Hishammudin Afifi Huspi & Heoy Geok How & Farooq Sher & Zia Ud Din & Thanh Danh Le & Huu Tho Nguyen, 2021. "Effect of Intake Air Temperature and Premixed Ratio on Combustion and Exhaust Emissions in a Partial HCCI-DI Diesel Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    3. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    5. Marco D’Amato & Annarita Viggiano & Vinicio Magi, 2020. "On the Turbulence-Chemistry Interaction of an HCCI Combustion Engine," Energies, MDPI, vol. 13(22), pages 1-23, November.
    6. Shi, Lei & Xiao, Wei & Li, Mengyu & Lou, Lin & Deng, Kang-yao, 2017. "Research on the effects of injection strategy on LTC combustion based on two-stage fuel injection," Energy, Elsevier, vol. 121(C), pages 21-31.
    7. Fridrichová, K. & Drápal, L. & Vopařil, J. & Dlugoš, J., 2021. "Overview of the potential and limitations of cylinder deactivation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.
    9. da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
    10. Tianbo Wang & Lanchun Zhang & Qian Chen, 2020. "Effect of Valve Opening Manner and Sealing Method on the Steady Injection Characteristic of Gas Fuel Injector," Energies, MDPI, vol. 13(6), pages 1-12, March.
    11. Cheolwoong Park & Taeyoung Kim & Gyubaek Cho & Janghee Lee, 2016. "Combustion and Emission Characteristics According to the Fuel Injection Ratio of an Ultra-Lean LPG Direct Injection Engine," Energies, MDPI, vol. 9(11), pages 1-12, November.
    12. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    13. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Pan, Zhenhua & Bani, Stephen & Chen, Wei & He, Ren, 2017. "Combined effect of injection timing and injection angle on mixture formation and combustion process in a direct injection (DI) natural gas rotary engine," Energy, Elsevier, vol. 128(C), pages 519-530.
    14. Kaario, Ossi Tapani & Vuorinen, Ville & Zhu, Lei & Larmi, Martti & Liu, Ronghou, 2017. "Mixing and evaporation analysis of a high-pressure SCR system using a hybrid LES-RANS approach," Energy, Elsevier, vol. 120(C), pages 827-841.
    15. Kocakulak, Tolga & Babagiray, Mustafa & Nacak, Çağatay & Safieddin Ardebili, Seyed Mohammad & Calam, Alper & Solmaz, Hamit, 2022. "Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends," Renewable Energy, Elsevier, vol. 182(C), pages 827-841.
    16. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    17. Yong Hyun Choi & Joonsik Hwang, 2023. "Review on Plasma-Assisted Ignition Systems for Internal Combustion Engine Application," Energies, MDPI, vol. 16(4), pages 1-25, February.
    18. Soto, Felipe & Marques, Gian & Torres-Jiménez, E. & Vieira, Bráulio & Lacerda, André & Armas, Octavio & Guerrero-Villar, F., 2019. "A comparative study of performance and regulated emissions in a medium-duty diesel engine fueled with sugarcane diesel-farnesane and sugarcane biodiesel-LS9," Energy, Elsevier, vol. 176(C), pages 392-409.
    19. Pradhan, Debalaxmi & Bendu, Harisankar & Singh, R.K. & Murugan, S., 2017. "Mahua seed pyrolysis oil blends as an alternative fuel for light-duty diesel engines," Energy, Elsevier, vol. 118(C), pages 600-612.
    20. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation," Energy, Elsevier, vol. 61(C), pages 345-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222002171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.