IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp392-409.html
   My bibliography  Save this article

A comparative study of performance and regulated emissions in a medium-duty diesel engine fueled with sugarcane diesel-farnesane and sugarcane biodiesel-LS9

Author

Listed:
  • Soto, Felipe
  • Marques, Gian
  • Torres-Jiménez, E.
  • Vieira, Bráulio
  • Lacerda, André
  • Armas, Octavio
  • Guerrero-Villar, F.

Abstract

Two sugarcane biofuels and mineral diesel fuel are tested under full load conditions, under the same values of performance and under the European Transient Cycle on an engine test bench, without any modifications to the ECU. The target is to compare engine performance and emissions. At full load, engine performance varies due to the variation in LHV. Under the same values of performance, the sugarcane biodiesel-LS9 provides the lowest THC emissions. The higher CN and exhaust gas recirculation of the sugarcane biodiesel-LS9 and the higher H/C ratio of the sugarcane diesel-farnesane compared to the diesel S50 provide a NOx reduction. Neither the increment in bsfc nor the increment of %EGR for the sugarcane biodiesel-LS9 deteriorate the combustion, so its CO emissions are lower. The sugarcane biodiesel-LS9 leads to the lowest NOx and PM specific emissions under transient operation, followed by the sugarcane diesel-farnesane. The THC and CO specific emissions are higher for the biofuels in comparison to the diesel S50. The main reason for these results is the impact of the properties of the biofuels on the ECU response However, both biofuels produce less harmful emissions at idle conditions, which supports their usage to reduce exhaust emissions in urban areas.

Suggested Citation

  • Soto, Felipe & Marques, Gian & Torres-Jiménez, E. & Vieira, Bráulio & Lacerda, André & Armas, Octavio & Guerrero-Villar, F., 2019. "A comparative study of performance and regulated emissions in a medium-duty diesel engine fueled with sugarcane diesel-farnesane and sugarcane biodiesel-LS9," Energy, Elsevier, vol. 176(C), pages 392-409.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:392-409
    DOI: 10.1016/j.energy.2019.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    2. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    3. Macor, A. & Avella, F. & Faedo, D., 2011. "Effects of 30% v/v biodiesel/diesel fuel blend on regulated and unregulated pollutant emissions from diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4989-5001.
    4. Armas, Octavio & García-Contreras, Reyes & Ramos, Ángel, 2013. "Impact of alternative fuels on performance and pollutant emissions of a light duty engine tested under the new European driving cycle," Applied Energy, Elsevier, vol. 107(C), pages 183-190.
    5. Pacesila, Mihaela & Burcea, Stefan Gabriel & Colesca, Sofia Elena, 2016. "Analysis of renewable energies in European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 156-170.
    6. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    7. Park, Cheolwoong & Kim, Sungdae & Kim, Hongsuk & Moriyoshi, Yasuo, 2012. "Stratified lean combustion characteristics of a spray-guided combustion system in a gasoline direct injection engine," Energy, Elsevier, vol. 41(1), pages 401-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhanming & Zhang, Tiancong & Wang, Xiaochen & Chen, Hao & Geng, Limin & Zhang, Teng, 2021. "A comparative study of combustion performance and emissions of dual-fuel engines fueled with natural gas/methanol and natural gas/gasoline," Energy, Elsevier, vol. 237(C).
    2. da Costa, Roberto Berlini Rodrigues & Coronado, Christian J.R. & Hernández, Juan J. & Malaquias, Augusto Cesar Teixeira & Flores, Luiz Fernando Valadão & de Carvalho, João A., 2021. "Experimental assessment of power generation using a compression ignition engine fueled by farnesane – A renewable diesel from sugarcane," Energy, Elsevier, vol. 233(C).
    3. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Keunsoo & Kim, Junghwan & Oh, Seungmook & Kim, Changup & Lee, Yonggyu, 2017. "Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions," Applied Energy, Elsevier, vol. 194(C), pages 123-135.
    2. Wei, L. & Cheung, C.S. & Ning, Z., 2017. "Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine," Energy, Elsevier, vol. 127(C), pages 175-185.
    3. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    4. He, Bang-Quan, 2016. "Advances in emission characteristics of diesel engines using different biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 570-586.
    5. Bari, S., 2014. "Performance, combustion and emission tests of a metro-bus running on biodiesel-ULSD blended (B20) fuel," Applied Energy, Elsevier, vol. 124(C), pages 35-43.
    6. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    7. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    8. Charu Vikram Srivatsa & Shah Saud Alam & Bailey Spickler & Christopher Depcik, 2024. "Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine," Energies, MDPI, vol. 17(16), pages 1-26, August.
    9. Andrea Patané & Giorgio Jansen & Piero Conca & Giovanni Carapezza & Jole Costanza & Giuseppe Nicosia, 2019. "Multi-objective optimization of genome-scale metabolic models: the case of ethanol production," Annals of Operations Research, Springer, vol. 276(1), pages 211-227, May.
    10. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    11. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    12. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    13. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    14. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    15. Pullen, James & Saeed, Khizer, 2014. "Factors affecting biodiesel engine performance and exhaust emissions – Part I: Review," Energy, Elsevier, vol. 72(C), pages 1-16.
    16. Chong, Cheng Tung & Hochgreb, Simone, 2017. "Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions," Applied Energy, Elsevier, vol. 185(P2), pages 1383-1392.
    17. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    18. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    19. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    20. Armas, Octavio & García-Contreras, Reyes & Ramos, Ángel, 2013. "Impact of alternative fuels on performance and pollutant emissions of a light duty engine tested under the new European driving cycle," Applied Energy, Elsevier, vol. 107(C), pages 183-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:392-409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.