Life Cycle and Exergoenvironmental Analyses of Ethanol: Performance of a Flex-Fuel Spark-Ignition Engine at Wide-Open Throttle Conditions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
- Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
- Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Giakoumis, Evangelos G., 2020. "Exergy assessment of combustion and EGR and load effects in DI diesel engine using comprehensive two-zone modeling," Energy, Elsevier, vol. 202(C).
- Filip Johnsson & Jan Kjärstad & Johan Rootzén, 2019. "The threat to climate change mitigation posed by the abundance of fossil fuels," Climate Policy, Taylor & Francis Journals, vol. 19(2), pages 258-274, February.
- Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
- Awad, Omar I. & Mamat, R. & Ali, Obed M. & Sidik, N.A.C. & Yusaf, T. & Kadirgama, K. & Kettner, Maurice, 2018. "Alcohol and ether as alternative fuels in spark ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2586-2605.
- Iodice, Paolo & Senatore, Adolfo & Langella, Giuseppe & Amoresano, Amedeo, 2016. "Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation," Applied Energy, Elsevier, vol. 179(C), pages 182-190.
- Razmara, M. & Bidarvatan, M. & Shahbakhti, M. & Robinett, R.D., 2016. "Optimal exergy-based control of internal combustion engines," Applied Energy, Elsevier, vol. 183(C), pages 1389-1403.
- Thakur, Amit Kumar & Kaviti, Ajay Kumar & Mehra, Roopesh & Mer, K.K.S., 2017. "Progress in performance analysis of ethanol-gasoline blends on SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 324-340.
- Anderson, Larry G., 2015. "Effects of using renewable fuels on vehicle emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 162-172.
- Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Zhao, Hua, 2016. "Performance and economic analysis of a direct injection spark ignition engine fueled with wet ethanol," Applied Energy, Elsevier, vol. 169(C), pages 230-239.
- Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
- Krishnamoorthi, M. & Sreedhara, S. & Prakash Duvvuri, Pavan, 2020. "Experimental, numerical and exergy analyses of a dual fuel combustion engine fuelled with syngas and biodiesel/diesel blends," Applied Energy, Elsevier, vol. 263(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Zhijian & Zhang, Lingyan & Wu, Shu, 2024. "Does ethanol-blended gasoline policy improve air quality in China?," Energy Economics, Elsevier, vol. 134(C).
- Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
- Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
- Blanco-Marigorta, Ana M. & Masi, Marco & Manfrida, Giampaolo, 2014. "Exergo-environmental analysis of a reverse osmosis desalination plant in Gran Canaria," Energy, Elsevier, vol. 76(C), pages 223-232.
- Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
- Akbulut, Ugur & Utlu, Zafer & Kincay, Olcay, 2016. "Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system," Energy, Elsevier, vol. 107(C), pages 502-522.
- Boyano, A. & Blanco-Marigorta, A.M. & Morosuk, T. & Tsatsaronis, G., 2011. "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production," Energy, Elsevier, vol. 36(4), pages 2202-2214.
- Morosuk, Tatiana & Tsatsaronis, George, 2019. "Splitting physical exergy: Theory and application," Energy, Elsevier, vol. 167(C), pages 698-707.
- Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Kanoglu, Mehmet & Ayanoglu, Abdulkadir & Abusoglu, Aysegul, 2011. "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system," Energy, Elsevier, vol. 36(7), pages 4422-4433.
- Seyam, Shaimaa & Dincer, Ibrahim & Agelin-Chaab, Martin, 2024. "Optimization and comparative evaluation of novel marine engines integrated with fuel cells using sustainable fuel choices," Energy, Elsevier, vol. 301(C).
- Keçebaş, Ali, 2016. "Exergoenvironmental analysis for a geothermal district heating system: An application," Energy, Elsevier, vol. 94(C), pages 391-400.
- Aghbashlo, Mortaza & Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Gupta, Vijai Kumar & Amiri, Hamid & Lam, Su Shiung & Morosuk, Tatiana & Tabatabaei, Meisam, 2021. "Exergoenvironmental analysis of bioenergy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Huang, Yue & Zhu, Lin & He, Yangdong & Wang, Yuan & Hao, Qiang & Zhu, Yifei, 2023. "Carbon dioxide utilization based on exergoenvironmental sustainability assessment: A case study of CO2 hydrogenation to methanol," Energy, Elsevier, vol. 273(C).
- Morosuk, Tatiana & Tsatsaronis, George, 2019. "Advanced exergy-based methods used to understand and improve energy-conversion systems," Energy, Elsevier, vol. 169(C), pages 238-246.
- Restrepo, Álvaro & Bazzo, Edson, 2016. "Co-firing: An exergoenvironmental analysis applied to power plants modified for burning coal and rice straw," Renewable Energy, Elsevier, vol. 91(C), pages 107-119.
- Mergenthaler, Pieter & Schinkel, Arndt-Peter & Tsatsaronis, George, 2017. "Application of exergoeconomic, exergoenvironmental, and advanced exergy analyses to Carbon Black production," Energy, Elsevier, vol. 137(C), pages 898-907.
- Sathish Kumar, T. & Ashok, B. & Saravanan, B., 2023. "Calibration of flex-fuel operating parameters using grey relational analysis to enhance the output characteristics of ethanol powered direct injection SI engine," Energy, Elsevier, vol. 281(C).
- Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
- Cavalcanti, Eduardo José Cidade, 2017. "Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 507-519.
More about this item
Keywords
ethanol; life cycle assessment; internal combustion engine; gasoline; ethanol; exergoenvironmental analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1422-:d:750196. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.