IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221031261.html
   My bibliography  Save this article

Optimization of battery charging strategy based on nonlinear model predictive control

Author

Listed:
  • Wang, Yujie
  • Zhou, Caijie
  • Chen, Zonghai

Abstract

With the increased applications of lithium-ion batteries in energy storage systems and electric vehicles, there is a growing demand for battery energy storage systems and management systems. Considering that the temperature especially internal temperature significantly can affect the performance and safety of the battery, a triple-objective optimization charging method which can reduce the cell charging time, energy loss, and internal temperature rise is proposed based on a thermoelectric coupling model in this paper. Specifically, a thermoelectric coupling model suitable for a wide temperature range from −5 °C to 45 °C is formulated. On this basis, a nonlinear model predictive control framework is proposed to obtain the real-time charging current by solving the nonlinear optimization problems. The impacts of the objective function weights and internal temperature thresholds on the charging result are discussed through experiments, and another multi-stage constant current charging method is conducted as a comparison. Results show that the nonlinear model predictive control can achieve a good balance between three objectives while satisfying constraints. Compared with the traditional multistage constant current charging method, the proposed strategy can reduce energy loss by 150 J and temperature rise by 1–2 °C in similar charging time.

Suggested Citation

  • Wang, Yujie & Zhou, Caijie & Chen, Zonghai, 2022. "Optimization of battery charging strategy based on nonlinear model predictive control," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031261
    DOI: 10.1016/j.energy.2021.122877
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221031261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Yilin & Choe, Song-Yul, 2020. "Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control," Applied Energy, Elsevier, vol. 271(C).
    2. Jingyu Yan & Guoqing Xu & Huihuan Qian & Yangsheng Xu & Zhibin Song, 2011. "Model Predictive Control-Based Fast Charging for Vehicular Batteries," Energies, MDPI, vol. 4(8), pages 1-19, August.
    3. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    4. Lin, Qian & Wang, Jun & Xiong, Rui & Shen, Weixiang & He, Hongwen, 2019. "Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries," Energy, Elsevier, vol. 183(C), pages 220-234.
    5. Li, Yunjian & Li, Kuining & Xie, Yi & Liu, Jiangyan & Fu, Chunyun & Liu, Bin, 2020. "Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant current–constant voltage charging strategy," Renewable Energy, Elsevier, vol. 146(C), pages 2688-2699.
    6. Zhang, Xu & Wang, Yujie & Yang, Duo & Chen, Zonghai, 2016. "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model," Energy, Elsevier, vol. 115(P1), pages 219-229.
    7. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    2. Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
    3. Shi, Haotian & Wang, Shunli & Fernandez, Carlos & Yu, Chunmei & Xu, Wenhua & Dablu, Bobobee Etse & Wang, Liping, 2022. "Improved multi-time scale lumped thermoelectric coupling modeling and parameter dispersion evaluation of lithium-ion batteries," Applied Energy, Elsevier, vol. 324(C).
    4. Olis, Walker & Rosewater, David & Nguyen, Tu & Byrne, Raymond H., 2023. "Impact of heating and cooling loads on battery energy storage system sizing in extreme cold climates," Energy, Elsevier, vol. 278(PB).
    5. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    6. Liu, Haoran & Yu, Jiaqi & Wang, Ruzhu, 2022. "Model predictive control of portable electronic devices under skin temperature constraints," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan-Jhu Chen & Yi-Hua Liu & Yu-Shan Cheng & Hung-Yu Pai, 2021. "A Novel Optimal Charging Algorithm for Lithium-Ion Batteries Based on Model Predictive Control," Energies, MDPI, vol. 14(8), pages 1-18, April.
    2. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    3. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    4. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    5. Chen, Wanying & Gong, Yeming & Chen, Qi & Wang, Hongwei, 2024. "Does battery management matter? Performance evaluation and operating policies in a self-climbing robotic warehouse," European Journal of Operational Research, Elsevier, vol. 312(1), pages 164-181.
    6. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    8. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    9. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    10. Deng, Zhongwei & Deng, Hao & Yang, Lin & Cai, Yishan & Zhao, Xiaowei, 2017. "Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery," Energy, Elsevier, vol. 138(C), pages 509-519.
    11. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    12. Fatmawati Fatmawati & Nuryanti Mustari & Haerana Haerana & Risma Niswaty & Abdillah Abdillah, 2022. "Waste Bank Policy Implementation through Collaborative Approach: Comparative Study—Makassar and Bantaeng, Indonesia," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    13. Andrzej Pacana & Dominika Siwiec & Robert Ulewicz & Malgorzata Ulewicz, 2024. "A Novelty Model Employing the Quality Life Cycle Assessment (QLCA) Indicator and Frameworks for Selecting Qualitative and Environmental Aspects for Sustainable Product Development," Sustainability, MDPI, vol. 16(17), pages 1-24, September.
    14. Pan, Haihong & Lü, Zhiqiang & Lin, Weilong & Li, Junzi & Chen, Lin, 2017. "State of charge estimation of lithium-ion batteries using a grey extended Kalman filter and a novel open-circuit voltage model," Energy, Elsevier, vol. 138(C), pages 764-775.
    15. Arjun K. Thapa & Abhinav C. Nouduri & Mohammed Mohiuddin & Hari Prasad Reddy Kannapu & Lihui Bai & Hui Wang & Mahendra K. Sunkara, 2024. "Recycling and Reuse of Mn-Based Spinel Electrode from Spent Lithium-Ion Batteries," Energies, MDPI, vol. 17(16), pages 1-13, August.
    16. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    17. Erick C. Jones, 2024. "Lithium Supply Chain Optimization: A Global Analysis of Critical Minerals for Batteries," Energies, MDPI, vol. 17(11), pages 1-31, May.
    18. Zhaosheng Zhang & Shuo Wang & Ni Lin & Zhenpo Wang & Peng Liu, 2023. "State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles Based on Regional Capacity and LGBM," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    19. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    20. Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.