IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223012720.html
   My bibliography  Save this article

Impact of heating and cooling loads on battery energy storage system sizing in extreme cold climates

Author

Listed:
  • Olis, Walker
  • Rosewater, David
  • Nguyen, Tu
  • Byrne, Raymond H.

Abstract

Efficient operation of battery energy storage systems requires that battery temperature remains within a specific range. Current techno-economic models neglect the parasitic loads heating and cooling operations have on these devices, assuming they operate at constant temperature. In this work, these effects are investigated considering the optimal sizing of battery energy storage systems when deployed in cold environments. A peak shaving application is presented as a linear programming problem which is then formulated in the PYOMO optimization programming language. The building energy simulation software EnergyPlus is used to model the heating, ventilation, and air conditioning load of the battery energy storage system enclosure. Case studies are conducted for eight locations in the United States considering a nickel manganese cobalt oxide lithium ion battery type and whether the power conversion system is inside or outside the enclosure. The results show an increase of 42% to 300% in energy capacity size, 43% to 217% in power rating, and 43% to 296% increase in capital cost dependent on location. This analysis shows that the heating, ventilation, and air conditioning load can have a large impact on the optimal sizes and cost of a battery energy storage system and merit consideration in techno-economic studies.

Suggested Citation

  • Olis, Walker & Rosewater, David & Nguyen, Tu & Byrne, Raymond H., 2023. "Impact of heating and cooling loads on battery energy storage system sizing in extreme cold climates," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223012720
    DOI: 10.1016/j.energy.2023.127878
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alizadeh, M.I. & Parsa Moghaddam, M. & Amjady, N. & Siano, P. & Sheikh-El-Eslami, M.K., 2016. "Flexibility in future power systems with high renewable penetration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1186-1193.
    2. Wang, Yujie & Zhou, Caijie & Chen, Zonghai, 2022. "Optimization of battery charging strategy based on nonlinear model predictive control," Energy, Elsevier, vol. 241(C).
    3. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    4. Ma, Yan & Ding, Hao & Liu, Yongqin & Gao, Jinwu, 2022. "Battery thermal management of intelligent-connected electric vehicles at low temperature based on NMPC," Energy, Elsevier, vol. 244(PA).
    5. He, Yi & Guo, Su & Zhou, Jianxu & Song, Guotao & Kurban, Aynur & Wang, Haowei, 2022. "The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system," Energy, Elsevier, vol. 245(C).
    6. Liu, Ye & Wu, Xiaogang & Du, Jiuyu & Song, Ziyou & Wu, Guoliang, 2020. "Optimal sizing of a wind-energy storage system considering battery life," Renewable Energy, Elsevier, vol. 147(P1), pages 2470-2483.
    7. Hassan, Aakash & Al-Abdeli, Yasir M. & Masek, Martin & Bass, Octavian, 2022. "Optimal sizing and energy scheduling of grid-supplemented solar PV systems with battery storage: Sensitivity of reliability and financial constraints," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    2. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    3. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    4. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    5. Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
    6. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    7. Ramin Sakipour & Hamdi Abdi, 2020. "Optimizing Battery Energy Storage System Data in the Presence of Wind Power Plants: A Comparative Study on Evolutionary Algorithms," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    8. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    9. O'Connell, & Voisin, Nathalie & Macknick, & Fu,, 2019. "Sensitivity of Western U.S. power system dynamics to droughts compounded with fuel price variability," Applied Energy, Elsevier, vol. 247(C), pages 745-754.
    10. Antti Alahäivälä & Juha Kiviluoma & Jyrki Leino & Matti Lehtonen, 2017. "System-Level Value of a Gas Engine Power Plant in Electricity and Reserve Production," Energies, MDPI, vol. 10(7), pages 1-13, July.
    11. Oh, Eunsung & Son, Sung-Yong, 2020. "Theoretical energy storage system sizing method and performance analysis for wind power forecast uncertainty management," Renewable Energy, Elsevier, vol. 155(C), pages 1060-1069.
    12. Imene Khenissi & Tawfik Guesmi & Ismail Marouani & Badr M. Alshammari & Khalid Alqunun & Saleh Albadran & Salem Rahmani & Rafik Neji, 2023. "Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
    13. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    14. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O. & Varandas, J., 2019. "Test results of a 30 kW self-rectifying biradial air turbine-generator prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 187-198.
    15. Wang, Xiaojing & Han, Li & Wang, Chong & Yu, Hongbo & Yu, Xiaojiao, 2023. "A time-scale adaptive dispatching strategy considering the matching of time characteristics and dispatching periods of the integrated energy system," Energy, Elsevier, vol. 267(C).
    16. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    17. Maitanova, Nailya & Schlüters, Sunke & Hanke, Benedikt & von Maydell, Karsten, 2024. "An analytical method for quantifying the flexibility potential of decentralised energy systems," Applied Energy, Elsevier, vol. 364(C).
    18. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    19. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    20. Feng, Wenxiu, 2023. "Risk Management of Energy Communities with Hydrogen Production and Storage Technologies," DES - Working Papers. Statistics and Econometrics. WS 36274, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223012720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.