IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221027365.html
   My bibliography  Save this article

Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm

Author

Listed:
  • Chang, Jinwei
  • Li, Zhi
  • Huang, Yan
  • Yu, Xiaonan
  • Jiang, Ruicheng
  • Huang, Rui
  • Yu, Xiaoli

Abstract

This study proposes a novel combined cooling, dehumidification and power system based on internal combustion engine (ICE) for high temperature and humidity regions. In the proposed system, the electricity demand is mainly provided by ICE while the cooling and dehumidification demands are totally satisfied by absorption chiller (AC) and liquid desiccant dehumidification (LDD) units driven by waste heat of engine exhaust and jacket water. In addition, the electricity demand can be supplemented by battery and Organic Rankine Cycle (ORC) units driven by abundant waste heat of ICE. The aim of this system is designed to succeed the highly efficient utilization of ICE waste heat among AC, LDD and ORC units, and satisfy the multi-energy demands of users by optimizing the operation strategy. Firstly, a case study based on the actual power, cooling and dehumidification demands of a hotel building in Singapore is conducted to assess the performance of the proposed system. The parametric study of prominent design parameters in this system is investigated first to explore their effects on the system performance. Next, considering annual total cost and CO2 emissions as evaluation objectives, augmented ε-constraint method combined with improved Mutation particle swarm optimization (M-PSO) algorithm is used to conduct the multi-objective optimization of equipment capacity and operation. Finally, a sensitivity analysis of significant uncertainty factors is researched. The optimal results show that, compared to the traditional energy supply system, the annual carbon dioxide emission reduction ratio and total cost saving ratio can reach 35.91% and 25.46%, respectively.

Suggested Citation

  • Chang, Jinwei & Li, Zhi & Huang, Yan & Yu, Xiaonan & Jiang, Ruicheng & Huang, Rui & Yu, Xiaoli, 2022. "Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027365
    DOI: 10.1016/j.energy.2021.122487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asegun Henry & Ravi Prasher & Arun Majumdar, 2020. "Five thermal energy grand challenges for decarbonization," Nature Energy, Nature, vol. 5(9), pages 635-637, September.
    2. Yang, Xiaohui & Leng, Zhengyang & Xu, Shaoping & Yang, Chunsheng & Yang, Li & Liu, Kang & Song, Yaoren & Zhang, Liufang, 2021. "Multi-objective optimal scheduling for CCHP microgrids considering peak-load reduction by augmented ε-constraint method," Renewable Energy, Elsevier, vol. 172(C), pages 408-423.
    3. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    4. Wang, Jiangjiang & Liu, Yi & Ren, Fukang & Lu, Shuaikang, 2020. "Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility," Energy, Elsevier, vol. 197(C).
    5. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Wang, Xi & Henshaw, Paul & Ting, David S.-K., 2021. "Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO)," Applied Energy, Elsevier, vol. 294(C).
    7. Das, Barun K. & Zaman, Forhad, 2019. "Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection," Energy, Elsevier, vol. 169(C), pages 263-276.
    8. Wang, Yingying & Fan, Ying & Wang, Dengjia & Liu, Yanfeng & Qiu, Zhenghao & Liu, Jiaping, 2020. "Optimization of the areas of solar collectors and photovoltaic panels in liquid desiccant air-conditioning systems using solar energy in isolated low-latitude islands," Energy, Elsevier, vol. 198(C).
    9. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yuankang & Deng, Zeyu & Yang, Jiaming & Hu, Yilun & Zhong, Kaifeng & Xie, Yubao & Ou, Zhihua & Guo, Shuting & Li, Xiaoning, 2024. "Performance analysis of a novel multimode electricity-cooling cogeneration system (ECCS) driven by exhaust from a marine engine," Energy, Elsevier, vol. 300(C).
    2. Park, Myeong Hyeon & Chung, Jun Yeob & Hong, Seong Ho & Shin, Hyun Ho & Lee, Dongchan & Kim, Yongchan, 2023. "Optimized geometric designs of desiccant wheels with metal-organic frameworks considering dehumidification capacity and energy," Energy, Elsevier, vol. 284(C).
    3. Xu, Yonghong & Zhang, Hongguang & Yang, Fubin & Tong, Liang & Yan, Dong & Yang, Yifan & Wang, Yan & Wu, Yuting, 2022. "Performance of compressed air energy storage system under parallel operation mode of pneumatic motor," Renewable Energy, Elsevier, vol. 200(C), pages 185-217.
    4. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Dasí-Crespo, Daniel, 2023. "Optimal sizing and design of renewable power plants in rural microgrids using multi-objective particle swarm optimization and branch and bound methods," Energy, Elsevier, vol. 284(C).
    5. Li, Ling-Ling & Qu, Li-Nan & Tseng, Ming-Lang & Lim, Ming K. & Ren, Xin-Yu & Miao, Yan, 2024. "Optimization and performance assessment of solar-assisted combined cooling, heating and power system systems: Multi-objective gradient-based optimizer," Energy, Elsevier, vol. 289(C).
    6. Wang, Bingzheng & Yu, Xiaoli & Xu, Hongming & Wu, Qian & Wang, Lei & Huang, Rui & Li, Zhi & Zhou, Quan, 2022. "Scenario analysis, management, and optimization of a new Vehicle-to-Micro-Grid (V2μG) network based on off-grid renewable building energy systems," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    2. Ai, Tianchao & Chen, Hongwei & Zhong, Fanghao & Jia, Jiandong & Song, Yangfan, 2023. "Multi-objective optimization of a novel CCHP system with organic flash cycle based on different operating strategies," Energy, Elsevier, vol. 276(C).
    3. Ren, Fukang & Lin, Xiaozhen & Wei, Ziqing & Zhai, Xiaoqiang & Yang, Jianrong, 2022. "A novel planning method for design and dispatch of hybrid energy systems," Applied Energy, Elsevier, vol. 321(C).
    4. Kang, Ligai & Yuan, Xiaoxue & Sun, Kangjie & Zhang, Xu & Zhao, Jun & Deng, Shuai & Liu, Wei & Wang, Yongzhen, 2022. "Feed-forward active operation optimization for CCHP system considering thermal load forecasting," Energy, Elsevier, vol. 254(PB).
    5. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    7. Kang, Ligai & Wu, Xiaojing & Yuan, Xiaoxue & Ma, Kunru & Wang, Yongzhen & Zhao, Jun & An, Qingsong, 2021. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings," Energy, Elsevier, vol. 233(C).
    8. Chen, Yuzhu & Xu, Jinzhao & Wang, Jun & Lund, Peter D., 2022. "Optimization of a weather-based energy system for high cooling and low heating conditions using different types of water-cooled chiller," Energy, Elsevier, vol. 252(C).
    9. Luo, Jielin & Yang, Hongxing, 2022. "A state-of-the-art review on the liquid properties regarding energy and environmental performance in liquid desiccant air-conditioning systems," Applied Energy, Elsevier, vol. 325(C).
    10. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    11. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    12. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    13. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    14. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    15. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    16. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    17. Jin, Baohong, 2023. "Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems," Energy, Elsevier, vol. 273(C).
    18. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    19. Fan Li & Jingxi Su & Bo Sun, 2023. "An Optimal Scheduling Method for an Integrated Energy System Based on an Improved k-Means Clustering Algorithm," Energies, MDPI, vol. 16(9), pages 1-22, April.
    20. Amy, Caleb & Pishahang, Mehdi & Kelsall, Colin C. & LaPotin, Alina & Henry, Asegun, 2021. "High-temperature Pumping of Silicon for Thermal Energy Grid Storage," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.