IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp408-423.html
   My bibliography  Save this article

Multi-objective optimal scheduling for CCHP microgrids considering peak-load reduction by augmented ε-constraint method

Author

Listed:
  • Yang, Xiaohui
  • Leng, Zhengyang
  • Xu, Shaoping
  • Yang, Chunsheng
  • Yang, Li
  • Liu, Kang
  • Song, Yaoren
  • Zhang, Liufang

Abstract

The integration of microgrids and the combined cooling heating and power (CCHP) systems can foster a better utilization of energy. In order to achieve economic optimization and peak-load reduction of the CCHP microgrids model, this paper proposes a multi-objective optimal scheduling model for CCHP microgrids integrated with renewable energy, energy storage system and incentive based demand response. First, linearization methods are applied to change the original nonlinear optimization model into a mixed-integer linear programming (MILP) problem. Then, an augmented ε-constraint (AUGMECON) method is implemented to solve the multi-objective optimization problem (MOP). Finally, the final scheme is selected from the obtained Pareto optimal set by fuzzy clustering method according to the preference of decision maker. The results show that the CCHP microgrids is effective in reducing pollutant gas emissions and reducing the cost of treating them. And compared with the other four intelligent algorithms, the proposed MILP method has better accuracy and computational efficiency. In addition, with the inclusion of the peak-load shifting function, the interruptible load and the battery can effectively respond to peak load changes by shifting the peak of the exchange power curve in the point of common coupling (PCC) of the CCHP microgrids. In the end, the sensitivity analysis is carried out and the results present that electricity price, natural gas price, and the efficiency of PV have varying degrees of impact on model performance.

Suggested Citation

  • Yang, Xiaohui & Leng, Zhengyang & Xu, Shaoping & Yang, Chunsheng & Yang, Li & Liu, Kang & Song, Yaoren & Zhang, Liufang, 2021. "Multi-objective optimal scheduling for CCHP microgrids considering peak-load reduction by augmented ε-constraint method," Renewable Energy, Elsevier, vol. 172(C), pages 408-423.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:408-423
    DOI: 10.1016/j.renene.2021.02.165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121003451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    2. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    3. Sarshar, Javad & Moosapour, Seyyed Sajjad & Joorabian, Mahmood, 2017. "Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting," Energy, Elsevier, vol. 139(C), pages 680-693.
    4. Zhang, Di & Evangelisti, Sara & Lettieri, Paola & Papageorgiou, Lazaros G., 2015. "Optimal design of CHP-based microgrids: Multiobjective optimisation and life cycle assessment," Energy, Elsevier, vol. 85(C), pages 181-193.
    5. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    6. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    7. Yeh, Wei-Chang & He, Min-Fan & Huang, Chia-Ling & Tan, Shi-Yi & Zhang, Xianyong & Huang, Yaohong & Li, Li, 2020. "New genetic algorithm for economic dispatch of stand-alone three-modular microgrid in DongAo Island," Applied Energy, Elsevier, vol. 263(C).
    8. Jin, Ming & Feng, Wei & Liu, Ping & Marnay, Chris & Spanos, Costas, 2017. "MOD-DR: Microgrid optimal dispatch with demand response," Applied Energy, Elsevier, vol. 187(C), pages 758-776.
    9. Lorestani, A. & Ardehali, M.M., 2018. "Optimal integration of renewable energy sources for autonomous tri-generation combined cooling, heating and power system based on evolutionary particle swarm optimization algorithm," Energy, Elsevier, vol. 145(C), pages 839-855.
    10. Falsafi, Hananeh & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming," Energy, Elsevier, vol. 64(C), pages 853-867.
    11. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2014. "Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling," Energy, Elsevier, vol. 74(C), pages 109-118.
    12. Pruitt, Kristopher A. & Braun, Robert J. & Newman, Alexandra M., 2013. "Evaluating shortfalls in mixed-integer programming approaches for the optimal design and dispatch of distributed generation systems," Applied Energy, Elsevier, vol. 102(C), pages 386-398.
    13. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    14. Cho, Heejin & Mago, Pedro J. & Luck, Rogelio & Chamra, Louay M., 2009. "Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme," Applied Energy, Elsevier, vol. 86(12), pages 2540-2549, December.
    15. Yamano, Shuhei & Nakaya, Takashi & Ikegami, Takashi & Nakayama, Masayuki & Akisawa, Atsushi, 2021. "Optimization modeling of mixed gas engine types with different maintenance spans and costs: Case study OF CCHP to evaluate optimal gas engine operations and combination of the types," Energy, Elsevier, vol. 222(C).
    16. Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
    17. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Torkan, Ramin & Ilinca, Adrian & Ghorbanzadeh, Milad, 2022. "A genetic algorithm optimization approach for smart energy management of microgrids," Renewable Energy, Elsevier, vol. 197(C), pages 852-863.
    2. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    3. Yuan, Guanxiu & Gao, Yan & Ye, Bei, 2021. "Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response," Renewable Energy, Elsevier, vol. 179(C), pages 1424-1446.
    4. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    5. Bishwajit Dey & Soham Dutta & Fausto Pedro Garcia Marquez, 2023. "Intelligent Demand Side Management for Exhaustive Techno-Economic Analysis of Microgrid System," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    6. Xu, Jiuping & Huang, Yidan & Shi, Yi & Li, Ruolan, 2022. "Reverse supply chain management approach for municipal solid waste with waste sorting subsidy policy," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    7. Chang, Jinwei & Li, Zhi & Huang, Yan & Yu, Xiaonan & Jiang, Ruicheng & Huang, Rui & Yu, Xiaoli, 2022. "Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm," Energy, Elsevier, vol. 239(PE).
    8. Negri, Simone & Tironi, Enrico & Superti-Furga, Gabrio & Carminati, Marco, 2021. "VSC-based LVDC distribution network with DERs: Equivalent circuits for leakage and ground fault currents evaluation," Renewable Energy, Elsevier, vol. 177(C), pages 1133-1146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    2. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    3. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2018. "Effect of load following strategies, hardware, and thermal load distribution on stand-alone hybrid CCHP systems," Applied Energy, Elsevier, vol. 220(C), pages 735-753.
    5. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
    6. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    7. Bai, Zhang & Liu, Taixiu & Liu, Qibin & Lei, Jing & Gong, Liang & Jin, Hongguang, 2018. "Performance investigation of a new cooling, heating and power system with methanol decomposition based chemical recuperation process," Applied Energy, Elsevier, vol. 229(C), pages 1152-1163.
    8. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    9. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    10. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
    11. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    12. Zheng, Lingwei & Wu, Hao & Guo, Siqi & Sun, Xinyu, 2023. "Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy," Energy, Elsevier, vol. 277(C).
    13. Deng, Yan & Liu, Yicai & Zeng, Rong & Wang, Qianxu & Li, Zheng & Zhang, Yu & Liang, Heng, 2021. "A novel operation strategy based on black hole algorithm to optimize combined cooling, heating, and power-ground source heat pump system," Energy, Elsevier, vol. 229(C).
    14. Ghanbari, Ali & Karimi, Hamid & Jadid, Shahram, 2020. "Optimal planning and operation of multi-carrier networked microgrids considering multi-energy hubs in distribution networks," Energy, Elsevier, vol. 204(C).
    15. Kneiske, T.M. & Braun, M. & Hidalgo-Rodriguez, D.I., 2018. "A new combined control algorithm for PV-CHP hybrid systems," Applied Energy, Elsevier, vol. 210(C), pages 964-973.
    16. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    17. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    18. Deng, Yan & Zeng, Rong & Liu, Yicai, 2022. "A novel off-design model to optimize combined cooling, heating and power system with hybrid chillers for different operation strategies," Energy, Elsevier, vol. 239(PB).
    19. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    20. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:408-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.