IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221025329.html
   My bibliography  Save this article

CFD modelling of coal gasification in a fluidized bed with the effects of calcination under different operating conditions

Author

Listed:
  • Diba, Mst Farhana
  • Karim, Md Rezwanul
  • Naser, Jamal

Abstract

This paper investigates the thermochemical and physical conversion processes of coal gasification numerically with particular interest on calcination in a bubbling fluidized bed furnace. A comprehensive Eulerian-Eulerian three-dimensional model is developed for studying the gasification process. Three calcination cases are carried out under different operating conditions while one inert case is conducted to evaluate the effect of calcination. The presented numerical results aim at determining the mechanism of coal gasification in an air-steam environment with different flowrates. Evidence of particle segregation is found in the bed of coal and limestone due to density reduction and diameter shrinkage. Char conversion is investigated for different air-coal and steam-coal ratios, also the effect of bed temperature, fluid flowrate and fuel feeding rate on the carbon conversion is studied comprehensively. The highest char conversion rate is observed in the airflow rate of 17.0 kg/h where the bed temperature is found to be maximum. A noticeable impact of calcination is found in the gaseous emission while increasing CO2 concentration. Time averaged solid and gas temperature and species concentration profiles indicate the steady-state condition of numerical simulation.

Suggested Citation

  • Diba, Mst Farhana & Karim, Md Rezwanul & Naser, Jamal, 2022. "CFD modelling of coal gasification in a fluidized bed with the effects of calcination under different operating conditions," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221025329
    DOI: 10.1016/j.energy.2021.122284
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221025329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karim, Md Rezwanul & Bhuiyan, Arafat Ahmed & Sarhan, Abd Alhamid Rafea & Naser, Jamal, 2020. "CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler," Renewable Energy, Elsevier, vol. 146(C), pages 1416-1428.
    2. Kong, Dali & Wang, Shuai & Luo, Kun & Hu, Chenshu & Li, Debo & Fan, Jianren, 2020. "Three-dimensional simulation of biomass gasification in a full-loop pilot-scale dual fluidized bed with complex geometric structure," Renewable Energy, Elsevier, vol. 157(C), pages 466-481.
    3. Gai, Chao & Chen, Mengjun & Liu, Tingting & Peng, Nana & Liu, Zhengang, 2016. "Gasification characteristics of hydrochar and pyrochar derived from sewage sludge," Energy, Elsevier, vol. 113(C), pages 957-965.
    4. Wang, Guangwei & Zhang, Jianliang & Zhang, Guohua & Ning, Xiaojun & Li, Xinyu & Liu, Zhengjian & Guo, Jian, 2017. "Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends," Energy, Elsevier, vol. 131(C), pages 27-40.
    5. Mendiburu, Andrés Z. & Carvalho, João A. & Zanzi, Rolando & Coronado, Christian R. & Silveira, José L., 2014. "Thermochemical equilibrium modeling of a biomass downdraft gasifier: Constrained and unconstrained non-stoichiometric models," Energy, Elsevier, vol. 71(C), pages 624-637.
    6. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    7. Kirtania, Kawnish & Axelsson, Joel & Matsakas, Leonidas & Christakopoulos, Paul & Umeki, Kentaro & Furusjö, Erik, 2017. "Kinetic study of catalytic gasification of wood char impregnated with different alkali salts," Energy, Elsevier, vol. 118(C), pages 1055-1065.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thoharudin, & Hsiau, Shu-San & Chen, Yi-Shun & Yang, Shouyin, 2023. "Design optimization of fluidized bed pyrolysis for energy and exergy analysis using a simplified comprehensive multistep kinetic model," Energy, Elsevier, vol. 276(C).
    2. Sunel Kumar & Zhihua Wang & Yong He & Yanqun Zhu & Kefa Cen, 2022. "Numerical Analysis for Coal Gasification Performance in a Lab-Scale Gasifier: Effects of the Wall Temperature and Oxygen/Coal Ratio," Energies, MDPI, vol. 15(22), pages 1-15, November.
    3. Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N., 2024. "Zero carbon emission CCGT power plant with integrated solid fuel gasification," Energy, Elsevier, vol. 294(C).
    4. Kuznetsov, G.V. & Syrodoy, S.V. & Purin, M.V. & Karelin, V.A. & Nigay, N.A. & Yankovsky, S.A. & Isaev, S.A., 2024. "Analysis of the possibility of solid-phase ignition of coal fuel," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Machin, Einara Blanco & Pedroso, Daniel Travieso & de Carvalho, João Andrade, 2017. "Energetic valorization of waste tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 306-315.
    3. Hu, Qiang & Yang, Haiping & Wu, Zhiqiang & Lim, C. Jim & Bi, Xiaotao T. & Chen, Hanping, 2019. "Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2," Energy, Elsevier, vol. 171(C), pages 678-688.
    4. Rodriguez-Alejandro, David A. & Nam, Hyungseok & Maglinao, Amado L. & Capareda, Sergio C. & Aguilera-Alvarado, Alberto F., 2016. "Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions," Energy, Elsevier, vol. 115(P1), pages 1092-1108.
    5. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    6. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    7. Ma, Jing & Chen, Mengjun & Yang, Tianxue & Liu, Zhengang & Jiao, Wentao & Li, Dong & Gai, Chao, 2019. "Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust," Energy, Elsevier, vol. 173(C), pages 732-739.
    8. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    9. Csaba Fogarassy & Laszlo Toth & Marton Czikkely & David Christian Finger, 2019. "Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems," Resources, MDPI, vol. 8(4), pages 1-14, December.
    10. Ramos, Vinícius Faria & Pinheiro, Olivert Soares & Ferreira da Costa, Esly & Souza da Costa, Andréa Oliveira, 2019. "A method for exergetic analysis of a real kraft biomass boiler," Energy, Elsevier, vol. 183(C), pages 946-957.
    11. Sreejith, C.C. & Haridasan, Navaneeth & Muraleedharan, C. & Arun, P., 2014. "Allothermal air–steam gasification of biomass with CO2 (carbon dioxide) sorption: Performance prediction based on a chemical kinetic model," Energy, Elsevier, vol. 69(C), pages 399-408.
    12. Elmaz, Furkan & Yücel, Özgün & Mutlu, Ali Yener, 2020. "Predictive modeling of biomass gasification with machine learning-based regression methods," Energy, Elsevier, vol. 191(C).
    13. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    14. HajiHashemi, MohammadSina & Mazhkoo, Shahin & Dadfar, Hossein & Livani, Ehsan & Naseri Varnosefaderani, Aliakbar & Pourali, Omid & Najafi Nobar, Shima & Dutta, Animesh, 2023. "Combined heat and power production in a pilot-scale biomass gasification system: Experimental study and kinetic simulation using ASPEN Plus," Energy, Elsevier, vol. 276(C).
    15. Einara Blanco Machin & Daniel Travieso Pedroso & Daviel Gómez Acosta & Maria Isabel Silva dos Santos & Felipe Solferini de Carvalho & Adrian Blanco Machín & Matías Abner Neira Ortíz & Reinaldo Sánchez, 2022. "Techno-Economic and Environmental Assessment of Municipal Solid Waste Energetic Valorization," Energies, MDPI, vol. 15(23), pages 1-17, November.
    16. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "The equivalence of stoichiometric and non-stoichiometric methods for modeling gasification and other reaction equilibria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Freda, Cesare & Tarquini, Pietro & Sharma, Vinod Kumar & Braccio, Giacobbe, 2022. "Thermodynamic improvement of solar driven gasification compared to conventional one," Energy, Elsevier, vol. 261(PA).
    18. Elmaz, Furkan & Yücel, Özgün, 2020. "Data-driven identification and model predictive control of biomass gasification process for maximum energy production," Energy, Elsevier, vol. 195(C).
    19. Silva, Isabelly P. & Lima, Rafael M.A. & Santana, Hortência E.P. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2022. "Development of a semi-empirical model for woody biomass gasification based on stoichiometric thermodynamic equilibrium model," Energy, Elsevier, vol. 241(C).
    20. Upadhyay, Darshit S. & Sakhiya, Anil Kumar & Panchal, Krunal & Patel, Amar H. & Patel, Rajesh N., 2019. "Effect of equivalence ratio on the performance of the downdraft gasifier – An experimental and modelling approach," Energy, Elsevier, vol. 168(C), pages 833-846.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221025329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.