IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp1055-1065.html
   My bibliography  Save this article

Kinetic study of catalytic gasification of wood char impregnated with different alkali salts

Author

Listed:
  • Kirtania, Kawnish
  • Axelsson, Joel
  • Matsakas, Leonidas
  • Christakopoulos, Paul
  • Umeki, Kentaro
  • Furusjö, Erik

Abstract

Different concentrations (0.1 and 1 M K+/Na+) of salt solutions (K2CO3, Na2CO3, NaOH and NaCl) were used to impregnate alkali in sawdust. After devolatilization, char samples were gasified at different temperatures (750–900 °C) under CO2 in a macro-thermogravimetric analyzer for gasification kinetics. Morphologically, three classes of chars could be identified. Chars experiencing the highest catalytic influence were in Class-2 (0.5 M K2CO3 and 1 M NaOH) with a swollen and molten surface. In contrast, Class-1 (wood char like) and Class-3 (with salt deposits) chars showed moderate and low catalytic effect on gasification reactivity respectively. It is believed to be related to char surface swelling and alkali salt used. At 850 °C or below, the reactivity increased linearly (Class-1 and Class-3 Char) with initial alkali content up to 2200 mmol alkali/kg of char (except for NaCl). The same reaction rate was maintained until 3600 mmol/kg of char of alkali loading (Class-2) and then decreased. However, no trend was observed at 900 °C due to drastic change in reactivity of the samples, probably due to alkali transformation. Among the salts, K2CO3 (0.5 M) was found to be the most suitable for catalytic gasification due to its high catalytic activity in combination with relatively low carbon leaching.

Suggested Citation

  • Kirtania, Kawnish & Axelsson, Joel & Matsakas, Leonidas & Christakopoulos, Paul & Umeki, Kentaro & Furusjö, Erik, 2017. "Kinetic study of catalytic gasification of wood char impregnated with different alkali salts," Energy, Elsevier, vol. 118(C), pages 1055-1065.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1055-1065
    DOI: 10.1016/j.energy.2016.10.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216315808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.10.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Qiang & Yang, Haiping & Wu, Zhiqiang & Lim, C. Jim & Bi, Xiaotao T. & Chen, Hanping, 2019. "Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2," Energy, Elsevier, vol. 171(C), pages 678-688.
    2. Furusjö, Erik & Ma, Chunyan & Ji, Xiaoyan & Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth, 2018. "Alkali enhanced biomass gasification with in situ S capture and novel syngas cleaning. Part 1: Gasifier performance," Energy, Elsevier, vol. 157(C), pages 96-105.
    3. Zhang, Li & Yao, Zonglu & Zhao, Lixin & Li, Zhihe & Yi, Weiming & Kang, Kang & Jia, Jixiu, 2021. "Synthesis and characterization of different activated biochar catalysts for removal of biomass pyrolysis tar," Energy, Elsevier, vol. 232(C).
    4. Shengguo Zhao & Liang Ding & Yun Ruan & Bin Bai & Zegang Qiu & Zhiqin Li, 2021. "Experimental and Kinetic Studies on Steam Gasification of a Biomass Char," Energies, MDPI, vol. 14(21), pages 1-23, November.
    5. Śpiewak, Katarzyna & Czerski, Grzegorz & Soprych, Piotr, 2023. "Steam gasification of tire char supported by catalysts based on biomass ashes," Energy, Elsevier, vol. 285(C).
    6. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.
    7. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    8. de Oliveira, Diego C. & Lora, Electo E.S. & Venturini, Osvaldo J. & Maya, Diego M.Y. & Garcia-Pérez, Manuel, 2023. "Gas cleaning systems for integrating biomass gasification with Fischer-Tropsch synthesis - A review of impurity removal processes and their sequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    9. Qianshi, Song & Wei, Zhang & Xiaowei, Wang & Xiaohan, Wang & Haowen, Li & Zixin, Yang & Yue, Ye & Guangqian, Luo, 2023. "Comprehensive effects of different inorganic elements on initial biomass char-CO2 gasification reactivity in micro fluidised bed reactor: Theoretical modeling and experiment analysis," Energy, Elsevier, vol. 262(PA).
    10. Diba, Mst Farhana & Karim, Md Rezwanul & Naser, Jamal, 2022. "CFD modelling of coal gasification in a fluidized bed with the effects of calcination under different operating conditions," Energy, Elsevier, vol. 239(PC).
    11. Dahou, T. & Defoort, F. & Khiari, B. & Labaki, M. & Dupont, C. & Jeguirim, M., 2021. "Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Sun, Kaiwei & Cui, Meiqin & Zhang, Bo & Li, Yongjun & Geng, Ping & Fu, Peng & Yi, Weiming & Zhang, Yan, 2023. "Some new insights into the kinetic compensation effect in different diffusion-controlled domain for char-CO2 gasification," Renewable Energy, Elsevier, vol. 217(C).
    13. Tahereh Jalalabadi & Behdad Moghtaderi & Jessica Allen, 2020. "Thermochemical Conversion of Biomass in the Presence of Molten Alkali-Metal Carbonates under Reducing Environments of N 2 and CO 2," Energies, MDPI, vol. 13(20), pages 1-14, October.
    14. Saiman Ding & Efthymios Kantarelis & Klas Engvall, 2020. "Effects of Porous Structure Development and Ash on the Steam Gasification Reactivity of Biochar Residues from a Commercial Gasifier at Different Temperatures," Energies, MDPI, vol. 13(19), pages 1-19, September.
    15. He, Qing & Yu, Junqin & Song, Xudong & Ding, Lu & Wei, Juntao & Yu, Guangsuo, 2020. "Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1055-1065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.