IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v8y2019i4p182-d298175.html
   My bibliography  Save this article

Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems

Author

Listed:
  • Csaba Fogarassy

    (Climate Change Economics Research Centre, Faculty of Economics and Social Sciences, Szent Istvan University, 2100 Gödöllö, Hungary)

  • Laszlo Toth

    (Faculty of Mechanical Engineering, Szent Istvan University, 2100 Gödöllö, Hungary)

  • Marton Czikkely

    (Climate Change Economics Research Centre, Faculty of Economics and Social Sciences, Szent Istvan University, 2100 Gödöllö, Hungary)

  • David Christian Finger

    (School of Science and Engineering, Reykjavik University, 101 Reykjavik, Iceland)

Abstract

Pyrolysis is a thermochemical process that consists of the degradation of organic polymers and biomass minerals in lignocellulose materials. At low pyrolysis temperature (300–400 °C), primarily carbon is produced during the reaction time. Rapid pyrolysis takes place at temperatures between 500 and 650 °C. If the temperature is higher than 700 °C, the final product is methane, also known as biogas. The pyrolysis generator can be combined with a small power plant (CHP), which is a promising technology because the unit can be installed directly near the biomass production, and electricity can be fed de-centrally to the public utility network, while there are several possibilities for using waste heat in local systems. Carbonaceous ash can be utilized well in the agricultural field, because, in areas with intensive farming, the soil suffers from carbon and mineral deficiencies, and the phenomenon of material defect can be reduced by a proper level of implementation. This study describes the technical content of the biochar pilot project, and then, through a detailed presentation of the experimental results, we interpret the new scientific results. Our aim is to improve the quality of the produced gas by increasing the efficiency of the pyrolysis generator. In order for the pyrolysis unit to operate continuously, with proper efficiency and good gas quality, it is necessary to optimize the operation process. Our review reveals that the use of vibration may be advantageous during pyrolysis, which affects the mass of the pyrolysis carbon in a plane. Accordingly, the application of vibration to the input section of the funnel might enhance the quality of the gas, as well. The study concludes that more accurate dimensioning of the main parts of the gas reactor and a more convenient design of the oxidation and reduction zones enhance the good-quality gas output.

Suggested Citation

  • Csaba Fogarassy & Laszlo Toth & Marton Czikkely & David Christian Finger, 2019. "Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems," Resources, MDPI, vol. 8(4), pages 1-14, December.
  • Handle: RePEc:gam:jresou:v:8:y:2019:i:4:p:182-:d:298175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/8/4/182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/8/4/182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhattacharya, S.C & Mizanur Rahman Siddique, A.H.Md & Pham, Hoang-Luong, 1999. "A study on wood gasification for low-tar gas production," Energy, Elsevier, vol. 24(4), pages 285-296.
    2. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    3. Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.
    4. Kalu Samuel Ukanwa & Kumar Patchigolla & Ruben Sakrabani & Edward Anthony & Sachin Mandavgane, 2019. "A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass," Sustainability, MDPI, vol. 11(22), pages 1-35, November.
    5. Phuphuakrat, Thana & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "Tar removal from biomass pyrolysis gas in two-step function of decomposition and adsorption," Applied Energy, Elsevier, vol. 87(7), pages 2203-2211, July.
    6. Thanapal, Siva Sankar & Annamalai, Kalyan & Sweeten, John M. & Gordillo, Gerardo, 2012. "Fixed bed gasification of dairy biomass with enriched air mixture," Applied Energy, Elsevier, vol. 97(C), pages 525-531.
    7. Mendiburu, Andrés Z. & Carvalho, João A. & Zanzi, Rolando & Coronado, Christian R. & Silveira, José L., 2014. "Thermochemical equilibrium modeling of a biomass downdraft gasifier: Constrained and unconstrained non-stoichiometric models," Energy, Elsevier, vol. 71(C), pages 624-637.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    2. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    4. Machin, Einara Blanco & Pedroso, Daniel Travieso & de Carvalho, João Andrade, 2017. "Energetic valorization of waste tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 306-315.
    5. Setyawan, M. Ismail Bagus & Dafiqurrohman, Hafif & Akbar, Maha Hidayatullah & Surjosatyo, Adi, 2021. "Characterizing a two-stage downdraft biomass gasifier using a representative particle model," Renewable Energy, Elsevier, vol. 173(C), pages 750-767.
    6. Rodriguez-Alejandro, David A. & Nam, Hyungseok & Maglinao, Amado L. & Capareda, Sergio C. & Aguilera-Alvarado, Alberto F., 2016. "Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions," Energy, Elsevier, vol. 115(P1), pages 1092-1108.
    7. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    8. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    9. Ramos, Vinícius Faria & Pinheiro, Olivert Soares & Ferreira da Costa, Esly & Souza da Costa, Andréa Oliveira, 2019. "A method for exergetic analysis of a real kraft biomass boiler," Energy, Elsevier, vol. 183(C), pages 946-957.
    10. Chiang, Kung-Yuh & Chien, Kuang-Li & Lu, Cheng-Han, 2012. "Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy," Applied Energy, Elsevier, vol. 100(C), pages 164-171.
    11. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    12. Sreejith, C.C. & Haridasan, Navaneeth & Muraleedharan, C. & Arun, P., 2014. "Allothermal air–steam gasification of biomass with CO2 (carbon dioxide) sorption: Performance prediction based on a chemical kinetic model," Energy, Elsevier, vol. 69(C), pages 399-408.
    13. Elmaz, Furkan & Yücel, Özgün & Mutlu, Ali Yener, 2020. "Predictive modeling of biomass gasification with machine learning-based regression methods," Energy, Elsevier, vol. 191(C).
    14. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    15. HajiHashemi, MohammadSina & Mazhkoo, Shahin & Dadfar, Hossein & Livani, Ehsan & Naseri Varnosefaderani, Aliakbar & Pourali, Omid & Najafi Nobar, Shima & Dutta, Animesh, 2023. "Combined heat and power production in a pilot-scale biomass gasification system: Experimental study and kinetic simulation using ASPEN Plus," Energy, Elsevier, vol. 276(C).
    16. Einara Blanco Machin & Daniel Travieso Pedroso & Daviel Gómez Acosta & Maria Isabel Silva dos Santos & Felipe Solferini de Carvalho & Adrian Blanco Machín & Matías Abner Neira Ortíz & Reinaldo Sánchez, 2022. "Techno-Economic and Environmental Assessment of Municipal Solid Waste Energetic Valorization," Energies, MDPI, vol. 15(23), pages 1-17, November.
    17. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "The equivalence of stoichiometric and non-stoichiometric methods for modeling gasification and other reaction equilibria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Freda, Cesare & Tarquini, Pietro & Sharma, Vinod Kumar & Braccio, Giacobbe, 2022. "Thermodynamic improvement of solar driven gasification compared to conventional one," Energy, Elsevier, vol. 261(PA).
    19. Elmaz, Furkan & Yücel, Özgün, 2020. "Data-driven identification and model predictive control of biomass gasification process for maximum energy production," Energy, Elsevier, vol. 195(C).
    20. Mendiburu, Andrés Z. & Carvalho, João A. & Zanzi, Rolando & Coronado, Christian R. & Silveira, José L., 2014. "Thermochemical equilibrium modeling of a biomass downdraft gasifier: Constrained and unconstrained non-stoichiometric models," Energy, Elsevier, vol. 71(C), pages 624-637.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:8:y:2019:i:4:p:182-:d:298175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.