IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5661-d436744.html
   My bibliography  Save this article

Enhanced Hydrate-Based Geological CO 2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change

Author

Listed:
  • Jyoti Shanker Pandey

    (Center for Energy Resource Engineering (CERE), Department of Chemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark)

  • Yousef Jouljamal Daas

    (Center for Energy Resource Engineering (CERE), Department of Chemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark)

  • Adam Paul Karcz

    (PROSYS Research Centre, Department Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark)

  • Nicolas von Solms

    (Center for Energy Resource Engineering (CERE), Department of Chemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark)

Abstract

Geological sequestration of CO 2 -rich gas as a CO 2 capture and storage technique has a lower technical and cost barrier compared to industrial scale-up. In this study, we have proposed CO 2 capture and storage via hydrate in geological formation within the hydrate stability zone as a novel technique to contribute to global warming mitigation strategies, including carbon capture, utilization, and storage (CCUS) and to prevent vast methane release into the atmosphere caused by hydrate melting. We have attempted to enhance total gas uptake and CO 2 capture efficiency in hydrate in the presence of kinetic promoters while using diluted CO 2 gas (CO 2 -N 2 mixture). Experiments are performed using unfrozen sands within hydrate stability zone condition and in the presence of low dosage surfactant and amino acids. Hydrate formation parameters, including sub-cooling temperature, induction time, total gas uptake, and split fraction, are calculated during the single-step formation and dissociation process. The effect of sands with varying particle sizes (160–630 µm, 1400–5000 µm), low dosage promoter (500–3000 ppm) and CO 2 concentration in feed gas (20–30 mol%) on formation kinetic parameters was investigated. Enhanced formation kinetics are observed in the presence of surfactant (1000–3000 ppm) and hydrophobic amino acids (3000 ppm) at 120 bar and 1 ℃ experimental conditions. We report induction time in the range of 7–170 min and CO 2 split fraction (0.60–0.90) in hydrate for 120 bar initial injection pressure. CO 2 split fraction can be enhanced by reducing sand particle size or increasing the CO 2 mol% in incoming feed gas at given injection pressure. This study also reports that formation kinetics in a porous medium are influenced by hydrate morphology. Hydrate morphology influences gas and water migration within sediments and controls pore space or particle surface correlation with the formation kinetics within coarse sediments. This investigation demonstrates the potential application of bio-friendly amino acids as promoters to enhance CO 2 capture and storage within hydrate. Sufficient contact time at gas-liquid interface and higher CO 2 separation efficiency is recorded in the presence of amino acids. The findings of this study could be useful in exploring the promoter-driven pore habitat of CO 2 -rich hydrates in sediments to address climate change.

Suggested Citation

  • Jyoti Shanker Pandey & Yousef Jouljamal Daas & Adam Paul Karcz & Nicolas von Solms, 2020. "Enhanced Hydrate-Based Geological CO 2 Capture and Sequestration as a Mitigation Strategy to Address Climate Change," Energies, MDPI, vol. 13(21), pages 1-28, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5661-:d:436744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5661/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5661/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    2. Pivezhani, Farzane & Roosta, Hadi & Dashti, Ali & Mazloumi, S. Hossein, 2016. "Investigation of CO2 hydrate formation conditions for determining the optimum CO2 storage rate and energy: Modeling and experimental study," Energy, Elsevier, vol. 113(C), pages 215-226.
    3. Jyoti Shanker Pandey & Nicolas von Solms, 2019. "Hydrate Stability and Methane Recovery from Gas Hydrate through CH 4 –CO 2 Replacement in Different Mass Transfer Scenarios," Energies, MDPI, vol. 12(12), pages 1-20, June.
    4. Marcelo Ketzer & Daniel Praeg & Luiz F. Rodrigues & Adolpho Augustin & Maria A. G. Pivel & Mahboubeh Rahmati-Abkenar & Dennis J. Miller & Adriano R. Viana & José A. Cupertino, 2020. "Gas hydrate dissociation linked to contemporary ocean warming in the southern hemisphere," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Ho, Leong Chuan & Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 63(C), pages 252-259.
    6. Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process," Energy, Elsevier, vol. 50(C), pages 364-373.
    7. Yang, Mingjun & Song, Yongchen & Jiang, Lanlan & Zhao, Yuechao & Ruan, Xuke & Zhang, Yi & Wang, Shanrong, 2014. "Hydrate-based technology for CO2 capture from fossil fuel power plants," Applied Energy, Elsevier, vol. 116(C), pages 26-40.
    8. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    9. Koide, H. & Takahashi, M. & Shindo, Y. & Tazaki, Y. & Iijima, M. & Ito, K. & Kimura, N. & Omata, K., 1997. "Hydrate formation in sediments in the sub-seabed disposal of CO2," Energy, Elsevier, vol. 22(2), pages 279-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pål Østebø Andersen, 2023. "Editor’s Choice: Advances in Carbon Capture Subsurface Storage and Utilization," Energies, MDPI, vol. 16(5), pages 1-4, February.
    2. Hongsheng Dong & Lunxiang Zhang & Jiaqi Wang, 2022. "Formation, Exploration, and Development of Natural Gas Hydrates," Energies, MDPI, vol. 15(16), pages 1-4, August.
    3. Jyoti Shanker Pandey & Saad Khan & Nicolas von Solms, 2022. "Screening of Low-Dosage Methanol as a Hydrate Promoter," Energies, MDPI, vol. 15(18), pages 1-20, September.
    4. Jyoti Shanker Pandey & Nicolas von Solms, 2022. "Metal–Organic Frameworks and Gas Hydrate Synergy: A Pandora’s Box of Unanswered Questions and Revelations," Energies, MDPI, vol. 16(1), pages 1-30, December.
    5. Jyoti Shanker Pandey & Saad Khan & Nicolas von Solms, 2021. "Chemically Influenced Self-Preservation Kinetics of CH 4 Hydrates below the Sub-Zero Temperature," Energies, MDPI, vol. 14(20), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    2. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Qureshi, M Fahed & Khandelwal, Himanshu & Usadi, Adam & Barckholtz, Timothy A. & Mhadeshwar, Ashish B. & Linga, Praveen, 2022. "CO2 hydrate stability in oceanic sediments under brine conditions," Energy, Elsevier, vol. 256(C).
    4. Remi-Erempagamo Tariyemienyo Meindinyo & Thor Martin Svartaas, 2016. "Gas Hydrate Growth Kinetics: A Parametric Study," Energies, MDPI, vol. 9(12), pages 1-29, December.
    5. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    6. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    7. Babu, Ponnivalavan & Ong, Hong Wen Nelson & Linga, Praveen, 2016. "A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 94(C), pages 431-442.
    8. Kim, Kwangbum & Truong-Lam, Hai Son & Lee, Ju Dong & Sa, Jeong-Hoon, 2023. "Facilitating clathrate hydrates with extremely rapid and high gas uptake for chemical-free carbon capture and methane storage," Energy, Elsevier, vol. 270(C).
    9. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    10. Zhang, Kai & Lau, Hon Chung, 2022. "Sequestering CO2 as CO2 hydrate in an offshore saline aquifer by reservoir pressure management," Energy, Elsevier, vol. 239(PC).
    11. Babu, Ponnivalavan & Datta, Stuti & Kumar, Rajnish & Linga, Praveen, 2014. "Impact of experimental pressure and temperature on semiclathrate hydrate formation for pre-combustion capture of CO2 using tetra-n-butyl ammonium nitrate," Energy, Elsevier, vol. 78(C), pages 458-464.
    12. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    13. Wang, Yiwei & Du, Mei & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Chen, Bo & Chen, Guangjin & Sun, Changyu & Yang, Lanying, 2017. "Experiments and simulations for continuous recovery of methane from coal seam gas (CSG) utilizing hydrate formation," Energy, Elsevier, vol. 129(C), pages 28-41.
    14. Xu, Chun-Gang & Xie, Wen-Jun & Chen, Guo-Shu & Yan, Xiao-Xue & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2020. "Study on the influencing factors of gas consumption in hydrate-based CO2 separation in the presence of CP by Raman analysis," Energy, Elsevier, vol. 198(C).
    15. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    16. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    17. Yan, Jin & Lu, Yi-Yu & Zhong, Dong-Liang & Zou, Zhen-Lin & Li, Jian-Bo, 2019. "Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids," Energy, Elsevier, vol. 180(C), pages 728-736.
    18. Wang, Yan & Zhong, Dong-Liang & Englezos, Peter & Yan, Jin & Ge, Bin-Bin, 2020. "Kinetic study of semiclathrate hydrates formed with CO2 in the presence of tetra-n-butyl ammonium bromide and tetra-n-butyl phosphonium bromide," Energy, Elsevier, vol. 212(C).
    19. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    20. Adeel ur Rehman & Bhajan Lal, 2022. "RETRACTED: Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5661-:d:436744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.