IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1889-d1376421.html
   My bibliography  Save this article

Impact of Regional Pressure Dissipation on Carbon Capture and Storage Projects: A Comprehensive Review

Author

Listed:
  • Haval Kukha Hawez

    (Department of Petroleum Engineering, Faculty of Engineering, Koya University, Koya KOY45, Kurdistan Region-F.R., Iraq
    School of Engineering, Robert Gordon University, Aberdeen AB10 7GJ, UK)

  • Taimoor Asim

    (School of Engineering, Robert Gordon University, Aberdeen AB10 7GJ, UK)

Abstract

Carbon capture and storage (CCS) is a critical technology for mitigating greenhouse gas emissions and combating climate change. CCS involves capturing CO 2 emissions from industrial processes and power plants and injecting them deep underground for long-term storage. The success of CCS projects is influenced by various factors, including the regional pressure dissipation effects in subsurface geological formations. The safe and efficient operation of CCS projects depends on maintaining the pressure in the storage formation. Regional pressure dissipation, often resulting from the permeability and geomechanical properties of the storage site, can have significant effects on project integrity. This paper provides a state-of-art of the impact of regional pressure dissipation on CCS projects, highlights its effects, and discusses ongoing investigations in this area based on different case studies. The results corroborate the idea that the Sleipner project has considerable lateral hydraulic connectivity, which is evidenced by pressure increase ranging from <0.1 MPa in case of an uncompartmentalized reservoir to >1 MPa in case of substantial flow barriers. After five years of injection, pore pressures in the water leg of a gas reservoir have increased from 18 MPa to 30 MPa at Salah project, resulting in a 2 cm surface uplift. Furthermore, artificial CO 2 injection was simulated numerically for 30 years timespan in the depleted oil reservoir of Jurong, located near the Huangqiao CO 2 -oil reservoir. The maximum amount of CO 2 injected into a single well could reach 5.43 × 10 6 tons, potentially increasing the formation pressure by up to 9.5 MPa. In conclusion, regional pressure dissipation is a critical factor in the implementation of CCS projects. Its impact can affect project safety, efficiency, and environmental sustainability. Ongoing research and investigations are essential to improve our understanding of this phenomenon and develop strategies to mitigate its effects, ultimately advancing the success of CCS as a climate change mitigation solution.

Suggested Citation

  • Haval Kukha Hawez & Taimoor Asim, 2024. "Impact of Regional Pressure Dissipation on Carbon Capture and Storage Projects: A Comprehensive Review," Energies, MDPI, vol. 17(8), pages 1-31, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1889-:d:1376421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1889/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1889/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ismail Ismail & Vassilis Gaganis, 2023. "Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review," Clean Technol., MDPI, vol. 5(2), pages 1-29, May.
    2. Zhang, Kai & Lau, Hon Chung, 2022. "Sequestering CO2 as CO2 hydrate in an offshore saline aquifer by reservoir pressure management," Energy, Elsevier, vol. 239(PC).
    3. Shu, David Yang & Deutz, Sarah & Winter, Benedikt Alexander & Baumgärtner, Nils & Leenders, Ludger & Bardow, André, 2023. "The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Aysylu Askarova & Aliya Mukhametdinova & Strahinja Markovic & Galiya Khayrullina & Pavel Afanasev & Evgeny Popov & Elena Mukhina, 2023. "An Overview of Geological CO 2 Sequestration in Oil and Gas Reservoirs," Energies, MDPI, vol. 16(6), pages 1-34, March.
    5. Tan, Zhizhou & Zeng, Xianhai & Lin, Boqiang, 2023. "How do multiple policy incentives influence investors’ decisions on biomass co-firing combined with carbon capture and storage retrofit projects for coal-fired power plants?," Energy, Elsevier, vol. 278(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weixin Pang & Yang Ge & Mingqiang Chen & Xiaohan Zhang & Huiyun Wen & Qiang Fu & Xin Lei & Qingping Li & Shouwei Zhou, 2024. "Large-Scale Experimental Investigation of Hydrate-Based Carbon Dioxide Sequestration," Energies, MDPI, vol. 17(13), pages 1-17, June.
    2. Desmond Batsa Dorhjie & Elena Mukhina & Anton Kasyanenko & Alexey Cheremisin, 2023. "Tight and Shale Oil Exploration: A Review of the Global Experience and a Case of West Siberia," Energies, MDPI, vol. 16(18), pages 1-28, September.
    3. Pfeiffer Johannes & Pittel Karen, 2024. "Abscheidung und Speicherung von CO2 und „schwer oder nicht vermeidbare Emissionen“," Wirtschaftsdienst, Sciendo, vol. 104(7), pages 462-469.
    4. Zhou, Xianmin & Wu, Yu-Shu & Chen, Hao & Elsayed, Mahmoud & Yu, Wei & Zhao, Xinrui & Murtaza, Mobeen & Shahzad Kamal, Muhammad & Zafar Khan, Sarmad & Al-Abdrabalnabi, Ridha & Ren, Bo, 2024. "Review of Carbon dioxide utilization and sequestration in depleted oil reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    5. Barbara Uliasz-Misiak & Jacek Misiak, 2024. "Underground Gas Storage in Saline Aquifers: Geological Aspects," Energies, MDPI, vol. 17(7), pages 1-23, March.
    6. Taimoor Asim & Haval Kukha Hawez, 2024. "Effects of CO 2 Geosequestration on Opalinus Clay," Energies, MDPI, vol. 17(10), pages 1-13, May.
    7. Ismail Ismail & Sofianos Panagiotis Fotias & Dimitris Avgoulas & Vassilis Gaganis, 2024. "Integrated Black Oil Modeling for Efficient Simulation and Optimization of Carbon Storage in Saline Aquifers," Energies, MDPI, vol. 17(8), pages 1-30, April.
    8. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Tan, Zhizhou & Huang, Hui & Lin, Boqiang, 2024. "Impact assessment of the residual lifespan of coal-fired power plants on the investment risk of carbon capture and storage retrofit," Energy, Elsevier, vol. 307(C).
    10. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).
    11. Barbara Uliasz-Misiak & Jacek Misiak & Joanna Lewandowska-Śmierzchalska, 2024. "Hydrogen Storage in Porous Rocks: A Bibliometric Analysis of Research Trends," Energies, MDPI, vol. 17(4), pages 1-15, February.
    12. Zhou, Xianyang & Zhou, Dequn & Ding, Hao & Zhao, Siqi & Wang, Qunwei, 2023. "Low-carbon transition of China's provincial power sector under renewable portfolio standards and carbon cap," Energy, Elsevier, vol. 283(C).
    13. Chu, Baoju & Lin, Boqiang & Tian, Lichun & Zheng, Chaofeng & Ye, Nan & Zhu, Yafang & Tan, Zhizhou, 2024. "A long-term impact assessment of carbon capture (storage) investment conducted by conventional power company on sustainable development," Applied Energy, Elsevier, vol. 358(C).
    14. Guo, Yang & Li, Shuxia & Sun, Hao & Wu, Didi & Liu, Lu & Zhang, Ningtao & Qin, Xuwen & Lu, Cheng, 2024. "Enhancing gas production and CO2 sequestration from marine hydrate reservoirs through optimized CO2 hydrate cap," Energy, Elsevier, vol. 303(C).
    15. Huang, Qian & Feng, Qing, 2024. "A bi-level model for coal power decarbonization via biomass co-firing considering CO2 emission trading system," Energy, Elsevier, vol. 305(C).
    16. Teng, Qiang & Zhang, Yu-Fei & Jiang, Hong-Dian & Liang, Qiao-Mei, 2023. "Economy-wide assessment of achieving carbon neutrality in China's power sector: A computable general equilibrium analysis," Renewable Energy, Elsevier, vol. 219(P2).
    17. Gu, Changwan & Li, Kai & Gao, Shikang & Li, Jiayu & Mao, Yifan, 2024. "CO2 abatement feasibility for blast furnace CCUS retrofits in BF-BOF steel plants in China," Energy, Elsevier, vol. 294(C).
    18. Zhang, Kai & Lau, Hon Chung & Bokka, Harsha Kumar & Hadia, Nanji J., 2022. "Decarbonizing the power and industry sectors in India by carbon capture and storage," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1889-:d:1376421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.