IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222009859.html
   My bibliography  Save this article

Enhanced CO2 sequestration based on hydrate technology with pressure oscillation in porous medium using NMR

Author

Listed:
  • Kuang, Yangmin
  • Zhang, Lunxiang
  • Zheng, Yanpeng

Abstract

Carbon dioxide (CO2) is a dominant greenhouse gas in the atmosphere that contributes to global warming. A promising approach to mitigate CO2 emissions is CO2 capture and storage (CCS) through clathrate hydrate crystallization under the seafloor; however, numerous issues regarding the mechanisms of concentration, efficiency, and stability of CO2 hydrate sequestration in seafloor sediments remain under dispute. This study employed low-field nuclear magnetic resonance (NMR) measurements to observe the in-situ formation of CO2 hydrate using the pressure oscillation method in porous media and evaluate the carbon sequestration efficiency. Our results indicate that CO2 hydrates are preferentially formed in large pore spaces, further hindering the subsequent gas contact with water in isolated pores. Additionally, a high initial water saturation is more conducive to high-quantity CO2 hydrate capture and sequestration in a pressure variation environment with a higher driving force. The proposed pressure oscillation method could effectively break the mass transfer barriers in the later stage of hydrate formation with the help of CO2 solubility fluctuations, significantly increase the rate of later hydrate formation, and shorten the period of hydrate sequestration.

Suggested Citation

  • Kuang, Yangmin & Zhang, Lunxiang & Zheng, Yanpeng, 2022. "Enhanced CO2 sequestration based on hydrate technology with pressure oscillation in porous medium using NMR," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009859
    DOI: 10.1016/j.energy.2022.124082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kan, Jing-Yu & Sun, Yi-Fei & Dong, Bao-Can & Yuan, Qing & Liu, Bei & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "Numerical simulation of gas production from permafrost hydrate deposits enhanced with CO2/N2 injection," Energy, Elsevier, vol. 221(C).
    2. Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process," Energy, Elsevier, vol. 50(C), pages 364-373.
    3. Ren, Liang-Liang & Jiang, Min & Wang, Ling-Ban & Zhu, Yi-Jian & Li, Zhi & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Gas hydrate exploitation and carbon dioxide sequestration under maintaining the stiffness of hydrate-bearing sediments," Energy, Elsevier, vol. 194(C).
    4. Aya, I. & Yamane, K. & Nariai, H., 1997. "Solubility of CO2 and density of CO2 hydrate at 30 MPa," Energy, Elsevier, vol. 22(2), pages 263-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siavashi, Javad & Mahdaviara, Mehdi & Shojaei, Mohammad Javad & Sharifi, Mohammad & Blunt, Martin J., 2024. "Segmentation of two-phase flow X-ray tomography images to determine contact angle using deep autoencoders," Energy, Elsevier, vol. 288(C).
    2. Steven Constable & Laura A. Stern, 2022. "Monitoring Offshore CO 2 Sequestration Using Marine CSEM Methods; Constraints Inferred from Field- and Laboratory-Based Gas Hydrate Studies," Energies, MDPI, vol. 15(19), pages 1-16, October.
    3. Li, Bing & Sun, Youhong & Jiang, Shuhui & Shen, Yifeng & Qi, Yun & Zhang, Guobiao, 2024. "Investigating CO2–N2 phase behavior for enhanced hydrate-based CO2 sequestration," Energy, Elsevier, vol. 289(C).
    4. Zhou, Guangzhao & Duan, Xianggang & Chang, Jin & Bo, Yu & Huang, Yuhan, 2023. "Investigation of CH4/CO2 competitive adsorption-desorption mechanisms for enhanced shale gas production and carbon sequestration using nuclear magnetic resonance," Energy, Elsevier, vol. 278(PB).
    5. Wang, Shuai & Sun, Huilian & Liu, Huiquan & Xi, Dezhi & Long, Jiayi & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Shi, Changrui & Ling, Zheng, 2024. "Novel vermiculite/tannic acid composite aerogels with outstanding CO2 storage via enhanced gas hydrate formation," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Kai & Lau, Hon Chung, 2022. "Sequestering CO2 as CO2 hydrate in an offshore saline aquifer by reservoir pressure management," Energy, Elsevier, vol. 239(PC).
    2. Ma, Z.W. & Zhang, P. & Bao, H.S. & Deng, S., 2016. "Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1273-1302.
    3. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    4. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    5. Adeel ur Rehman & Bhajan Lal, 2022. "RETRACTED: Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1, November.
    6. Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
    7. Fuqin Lu & Xuebing Zhou & Caili Huang & Dongliang Li & Deqing Liang, 2023. "Effect of Residual Water in Sediments on the CO 2 -CH 4 Replacement Process," Energies, MDPI, vol. 16(7), pages 1-16, March.
    8. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    9. Zhang, Yongliang & Jin, Bo & Zou, Xixian & Zhao, Haibo, 2016. "A clean coal utilization technology based on coal pyrolysis and chemical looping with oxygen uncoupling: Principle and experimental validation," Energy, Elsevier, vol. 98(C), pages 181-189.
    10. Liu, Jun & Ding, Jia-Xiang & Liang, De-Qing, 2018. "Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed," Energy, Elsevier, vol. 157(C), pages 54-64.
    11. Li, Junhui & Shi, Lingli & He, Yong & Lu, Jingsheng & Long, Zhen & Liang, Deqing, 2023. "Kinetic characteristics of methane hydrate formation under the synergistic effect of electric field and Hexadecyl trimethyl ammonium Bromide," Energy, Elsevier, vol. 283(C).
    12. Xie, Yan & Zhu, Yu-Jie & Cheng, Li-Wei & Zheng, Tao & Zhong, Jin-Rong & Xiao, Peng & Sun, Chang-Yu & Chen, Guang-Jin & Feng, Jing-Chun, 2023. "The coexistence of multiple hydrates triggered by varied H2 molecule occupancy during CO2/H2 hydrate dissociation," Energy, Elsevier, vol. 262(PA).
    13. Wang, Shuai & Sun, Huilian & Liu, Huiquan & Xi, Dezhi & Long, Jiayi & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Shi, Changrui & Ling, Zheng, 2024. "Novel vermiculite/tannic acid composite aerogels with outstanding CO2 storage via enhanced gas hydrate formation," Energy, Elsevier, vol. 289(C).
    14. Zhong, Dong-Liang & Wang, Wen-Chun & Zou, Zhen-Lin & Lu, Yi-Yu & Yan, Jin & Ding, Kun, 2018. "Investigation on methane recovery from low-concentration coal mine gas by tetra-n-butyl ammonium chloride semiclathrate hydrate formation," Applied Energy, Elsevier, vol. 227(C), pages 686-693.
    15. Jiang, Wei & Kan, Jingyu & Dong, Baocan & Li, Xingxun & Wang, Xiaohui & Deng, Chun & Liu, Bei & Li, Qingping & Sun, Changyu & Chen, Guangjin, 2023. "Natural gas hydrate exploitation and recovered natural gas liquefaction driven by wind power: Process modelling and energy performance evaluation," Energy, Elsevier, vol. 282(C).
    16. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu, 2015. "Three dimensional experimental and numerical investigations into hydrate dissociation in sandy reservoir with dual horizontal wells," Energy, Elsevier, vol. 90(P1), pages 836-845.
    17. Bai, Yang & Lin, Hai-Fei & Li, Shu-Gang & Long, Hang & Yan, Min & Li, Yong & Qin, Lei & Zhou, Bin, 2022. "Experimental study on kinetic characteristics of gas diffusion in coal under nitrogen injection," Energy, Elsevier, vol. 254(PA).
    18. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    19. Guan, Dawei & Qu, Aoxing & Wang, Zifei & Lv, Xin & Li, Qingping & Leng, Shudong & Xiao, Bo & Zhang, Lunxiang & Zhao, Jiafei & Yang, Lei & Song, Yongchen, 2023. "Fluid flow-induced fine particle migration and its effects on gas and water production behavior from gas hydrate reservoir," Applied Energy, Elsevier, vol. 331(C).
    20. Babu, Ponnivalavan & Datta, Stuti & Kumar, Rajnish & Linga, Praveen, 2014. "Impact of experimental pressure and temperature on semiclathrate hydrate formation for pre-combustion capture of CO2 using tetra-n-butyl ammonium nitrate," Energy, Elsevier, vol. 78(C), pages 458-464.

    More about this item

    Keywords

    CO2 sequestration; CO2 hydrate; Pressure oscillation; NMR;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.