IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipbs0360544221020946.html
   My bibliography  Save this article

Morphology of char particles from coal pyrolysis in a pressurized entrained flow reactor: Effects of pressure and atmosphere

Author

Listed:
  • Zhang, Jiaye
  • Chen, Chongming
  • Zhou, Ao
  • Rahman, Zia ur
  • Wang, Xuebin
  • Stojiljković, Dragoslava
  • Manić, Nebojsa
  • Vujanović, Milan
  • Tan, Houzhang

Abstract

A pressurized drop tube furnace was used to study the pyrolysis behavior of bituminous and lignite coal at elevated pressure. Experiments were conducted at the pressure range from 1 to 10 atm in 100% N2 or 100% CO2 atmosphere. The volatile yields, char morphology, swelling ratio, and pore structure were discussed in detail. The results show that the pressure, atmosphere and coal rank could effect on the volatile releasing and char evolution significantly. In N2 atmosphere, the total volatile yields of YL and NM coal decrease as the pressure elevated, while in CO2 atmosphere, the mass release of NM coal increases at high pressure contributed by the reaction of CO2 with organic macromolecule inside the particles; different with bituminous coal, no significant swelling behavior is found with the increase of pressure; the BET surface area of YL char decreases as the pressure increases, while for lignite coal, in N2 atmosphere and at high pressure, less macro pores are formed, which could contribute to the BET surface area. While in CO2 atmosphere, the CO2-macromocular organic reaction would promote the volatile releasing, and the BET surface area decreases significantly at high pressure.

Suggested Citation

  • Zhang, Jiaye & Chen, Chongming & Zhou, Ao & Rahman, Zia ur & Wang, Xuebin & Stojiljković, Dragoslava & Manić, Nebojsa & Vujanović, Milan & Tan, Houzhang, 2022. "Morphology of char particles from coal pyrolysis in a pressurized entrained flow reactor: Effects of pressure and atmosphere," Energy, Elsevier, vol. 238(PB).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020946
    DOI: 10.1016/j.energy.2021.121846
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221020946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qiang & Song, Xiaoxin, 2021. "Why do China and India burn 60% of the world’s coal? A decomposition analysis from a global perspective," Energy, Elsevier, vol. 227(C).
    2. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    3. Yang, Zhiwei & Khatri, Dishant & Verma, Piyush & Li, Tianxiang & Adeosun, Adewale & Kumfer, Benjamin M. & Axelbaum, Richard L., 2021. "Experimental study and demonstration of pilot-scale, dry feed, oxy-coal combustion under pressure," Applied Energy, Elsevier, vol. 285(C).
    4. Wang, Xuebin & Zhang, Jiaye & Xu, Xinwei & Mikulčić, Hrvoje & Li, Yan & Zhou, Yuegui & Tan, Houzhang, 2020. "Numerical study of biomass Co-firing under Oxy-MILD mode," Renewable Energy, Elsevier, vol. 146(C), pages 2566-2576.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yukai & Feng, Dongdong & Sun, Shaozeng & Zhao, Yijun & Shang, Qi & Chen, Kun & Li, Bowen & Wu, Jiangquan, 2022. "Biomass-coal reburning: Competitive mechanism of gas-solid product activation coal char," Energy, Elsevier, vol. 261(PA).
    2. Ma, Cheng & Zhao, Yuzhen & Lang, Tingting & Zou, Chong & Zhao, Junxue & Miao, Zongcheng, 2023. "Pyrolysis characteristics of low-rank coal in a low-nitrogen pyrolysis atmosphere and properties of the prepared chars," Energy, Elsevier, vol. 277(C).
    3. Zhang, Xiaoyu & Zhu, Shujun & Zhu, Jianguo & Liu, Yuhua & Zhang, Jiahang & Hui, Jicheng & Ding, Hongliang & Cao, Xiaoyang & Lyu, Qinggang, 2023. "Preheating and combustion characteristics of anthracite under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 274(C).
    4. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    5. Huang, Xiaohong & Hu, Fan & Liu, Xuhui & Liu, Zhaohui, 2022. "Structure and reactivity of chars prepared from low-volatile coal under O2/N2 and O2/CO2 conditions in a flat-flame assisted entrained flow reactor," Energy, Elsevier, vol. 261(PB).
    6. Li, Yukai & Sun, Shaozeng & Feng, Dongdong & Zhang, Wenda & Zhao, Yijun & Qin, Yukun, 2023. "Syngas tempered pulverized coal reburning: Effect of different reaction gas components," Energy, Elsevier, vol. 271(C).
    7. Rahman, Zia ur & Wang, Xuebin & Zhang, Jiaye & Yang, Zhiwei & Dai, Gaofeng & Verma, Piyush & Mikulcic, Hrvoje & Vujanovic, Milan & Tan, Houzhang & Axelbaum, Richard L., 2022. "Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Yali & Wang, Qunwei & Tan, Tao, 2023. "An ensemble learning framework for rooftop photovoltaic project site selection," Energy, Elsevier, vol. 285(C).
    2. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    3. Xu, Yizhen & Qin, Botao & Shi, Quanlin & Hao, Mingyue & Shao, Xu & Jiang, Zhe & Ma, Zujie, 2023. "Study on the preparation and properties of colloidal gas foam concrete to prevent spontaneous combustion of coal," Energy, Elsevier, vol. 283(C).
    4. Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
    5. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Development of non-deterministic energy-water-carbon nexus planning model: A case study of Shanghai, China," Energy, Elsevier, vol. 246(C).
    6. Qianyi Du & Haoran Pan & Shuang Liang & Xiaoxue Liu, 2023. "Can Green Credit Policies Accelerate the Realization of the Dual Carbon Goal in China? Examination Based on an Endogenous Financial CGE Model," IJERPH, MDPI, vol. 20(5), pages 1-26, March.
    7. Razzaq, Asif & Sharif, Arshian & An, Hui & Aloui, Chaker, 2022. "Testing the directional predictability between carbon trading and sectoral stocks in China: New insights using cross-quantilogram and rolling window causality approaches," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    8. Zhe Zhao & Xin Xuan & Fan Zhang & Ying Cai & Xiaoyu Wang, 2022. "Scenario Analysis of Renewable Energy Development and Carbon Emission in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(10), pages 1-13, September.
    9. Chong, Chin Hao & Zhou, Xiaoyong & Zhang, Yongchuang & Ma, Linwei & Bhutta, Muhammad Shoaib & Li, Zheng & Ni, Weidou, 2023. "LMDI decomposition of coal consumption in China based on the energy allocation diagram of coal flows: An update for 2005–2020 with improved sectoral resolutions," Energy, Elsevier, vol. 285(C).
    10. Qin, Meng & Zhang, Xiaojing & Li, Yameng & Badarcea, Roxana Maria, 2023. "Blockchain market and green finance: The enablers of carbon neutrality in China," Energy Economics, Elsevier, vol. 118(C).
    11. He, Yi & Guo, Su & Zhou, Jianxu & Ye, Jilei & Huang, Jing & Zheng, Kun & Du, Xinru, 2022. "Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages," Renewable Energy, Elsevier, vol. 184(C), pages 776-790.
    12. Yuhan Wang & Zenghui Huo & Dongpo Li & Mei Zhang, 2022. "Evaluation of Common Prosperity Level and Regional Difference Analysis along the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    13. Jia, Zhijie & Wen, Shiyan & Liu, Yu, 2022. "China's urban-rural inequality caused by carbon neutrality: A perspective from carbon footprint and decomposed social welfare," Energy Economics, Elsevier, vol. 113(C).
    14. Zhang, Mingming & Song, Wenwen & Liu, Liyun & Zhou, Dequn, 2024. "Optimal investment portfolio strategy for carbon neutrality of power enterprises," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2022. "Exploring the multidimensional effects of China's coal de-capacity policy: A regression discontinuity design," Resources Policy, Elsevier, vol. 75(C).
    16. Wu, Huijun & Zeng, Xiaoyu & Zhang, Ling & Liu, Xin & Jiang, Songyan & Dong, Zhanfeng & Meng, Xiangrui & Wang, Qianqian, 2023. "Water-energy nexus embedded in coal supply chain of a coal-based city, China," Resources Policy, Elsevier, vol. 85(PA).
    17. Xiao, Guolin & Gao, Xiaori & Lu, Wei & Liu, Xiaodong & Asghar, Aamer Bilal & Jiang, Liu & Jing, Wenlin, 2023. "A physically based air proportioning methodology for optimized combustion in gas-fired boilers considering both heat release and NOx emissions," Applied Energy, Elsevier, vol. 350(C).
    18. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
    19. Xu, Jiayi & Tan-Soo, Jie-Sheng & Chu, Yanlai & Zhang, Xiao-Bing, 2023. "Gasoline price and fuel economy of new automobiles: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 126(C).
    20. Yuan, Zhenhua & Chen, Zhichao & Zhang, Bo & Gao, Xuelin & Li, Jiawei & Qiao, Yanyu & Li, Zhengqi, 2023. "Study on the slagging trends of the pre-combustion chamber in industrial pulverized coal boiler under different excess air coefficients by CFD numerical simulation," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221020946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.